
PARALLEL SIMULATION MADE EASY WITH OMNeT++
���������
	���
�	���	������ ������� † ���� ���!�"$#&%���'�% ‡ (��	�'����*),+-�/.0'�%�� †

†Centre for Telecommunication and Information Engineering, Monash University, Melbourne, Australia
‡Omnest Global Inc., Budapest, Hungary

KEYWORDS

Parallel simulation, discrete-event simulation, PDES

ABSTRACT

This paper reports a new parallel and distributed simulation
architecture for OMNeT++, an open-source discrete event
simulation environment. The primary application area of
OMNeT++ is the simulation of communication networks.
Support for a conservative PDES protocol (the Null Mes-
sage Algorithm) and the relatively novel Ideal Simulation
Protocol has been implemented. Placeholder modules, a
novel way of distributing the model over several logical
processes (LPs) is presented. The OMNeT++ PDES im-
plementation has a modular and extensible architecture, al-
lowing new synchronization protocols and new communi-
cation mechanisms to be added easily, which makes it an
attractive platform for PDES research, too. We intend to
use this framework to harness the computational capacity
of high-performance cluster computers for modeling very
large scale telecommunication networks to investigate pro-
tocol performance and rare event failure scenarios.

INTRODUCTION

Telecommunication networks are increasingly becoming
more complex as the trend toward the integration of tele-
phony and data networks into integrated services networks
gains momentum. It is expected that these integrated ser-
vices networks will include wireless and mobile environ-
ments as well as wired ones. As a consequence of the
rapid development, reduced time to market, fusion of com-
munication technologies and rapid growth of the Internet,
predicting network performance, and eliminating protocol
faults have become an extremely difficult task. Attempts to
predict and extrapolate the network performance in small-
scale experimental testbeds may yield incomplete or con-
tradictory outcomes. Application of analytical methods is
also not feasible due to the complexity of the protocol in-
teractions, analytical intractability and size (Bagrodia et al.,
1998). For large scale analysis in both the spatial and tem-
poral domain, accurate and detailed models using parallel
simulation techniques offer a practical answer. It should be
noted that simulation is now considered as a tool of equal

importance and complementary to the analytical and exper-
imental studies for investigating and understanding the be-
havior of various complex systems such as climate research,
evolution of solar system and modeling nuclear explosions.

This paper reports about the results of implementing par-
allel simulation support in the OMNeT++ discrete event
simulation tool (Varga, 2001). The project has been mo-
tivated by and forms part of our ongoing research programs
at CTIE, Monash University on the analysis of protocol per-
formance of large-scale mobile IPv6 networks. We have
developed a set of OMNeT++ models for accurate simula-
tion of IPv6 protocols (Lai et al., 2002). We are now fo-
cusing our efforts to simulate mobile IPv6 networks in very
large scale. For this purpose, we intend to use the computa-
tional capacity of APAC (http://www.vpac.org) and VPAC
(http://www.apac.edu.au) supercomputing clusters. In a se-
ries of future articles, we will be reporting our related re-
search on synchronization methods, efficient topology par-
titioning for parallel simulation, and topology generation
for mobile/wireless/cellular Internet.

PARALLEL SIMULATION OF COMMUNI-
CATION NETWORKS TODAY

Discrete event simulation of telecommunications systems
is generally a computation intensive task. A single run of
a wireless network model with thousands of mobile nodes
may easily take several days and even weeks to obtain
statistically trustworthy results even on today’s comput-
ers, and many simulation studies require several simulation
runs(Bagrodia et al., 1998). Independent replicated simu-
lation runs have been proposed to reduce the time needed
for a simulation study, but this approach is often not pos-
sible (for example, one simulation run may depend on the
results of earlier runs as input) or not practical. Parallel dis-
crete event simulation (PDES) offers an attractive alterna-
tive. By distributing the simulation over several processors,
it is possible to achieve a speedup compared to sequential
(one-processor) simulation. Another motivation for PDES
is distributing resource demand among several computers.
A simulation model often exceeds the memory limits of a
single workstation. Even though distributing the model over
several computers and controlling the execution with PDES
algorithms may result in slower execution than on a sin-
gle workstation (due to communication and synchronization
overhead in the PDES mechanism), but at least it is possible

to run the model.

It is a recent trend that clusters (as opposed to shared
memory multiprocessors) are becoming an attractive PDES
platform (Pham, 1999), mainly because of their excellent
price/performance ratio. Also, very large-scale network
simulations demand computing capacity that can only be
provided with cluster computing at affordable costs.

Despite about 15-20 years on research on parallel dis-
crete event simulation (see e.g. (Chandy and Misra, 1979)),
PDES is today still more of a promise than part of every-
day practice. Fujimoto, a PDES veteran (Fujimoto, 1990),
expressed this only last year (Fujimoto, 2002) as: “Parallel
simulation provides a benefit, but it has to be transparent,
automatic, and virtually free in order to gain widespread
acceptance. Today it ain’t. It may never be.”

What parallel simulation tools are available today for the
communication networks research community? A parallel
simulation extension for the traditionally widely used ns2
simulator has been created at the Georgia Institute of Tech-
nology (PADS Research Group), but it is not in wide use.
Also, ns2 is apparently losing its popularity because its ar-
chitecture makes it difficult to simulate wireless networks,
a prime interest area today. SSFNet (ssfnet) claims to be
a standard for parallel discrete event network simulation.
SSFNet’s commercial Java implementation (Renesys Race-
way) is becoming popular in the research community, but
SSFNet for C++ (DaSSF) does not seem to receive nearly
as much attention, probably due to the lack of network pro-
tocol models. JavaSim (javasim), another popular network
simulation environment does not have PDES support. Par-
sec (Bagrodia and Meyer, 1998) has to date failed to gain
strong foothold in the scientific community outside UCLA,
and went into commercial direction instead (Qualnet (qual-
net)). The optimistic parallel simulation tool SPEEDES
(speedes)(Steinman) has similarly become commercial, and
it is apparently not being used for simulation of communi-
cation networks. Also, SPEEDES is available for use only
within the USA. The best-known commercial network sim-
ulation tool, OPNET (opnet) claims to support parallel sim-
ulation, but nothing has been published about it. It appears
that OPNET simulations can make use of multiprocessor
architectures, but cannot run on clusters.

Apparently, the choice is limited for communication net-
works research groups that intend to make use of parallel
simulation techniques on clusters. SSFNet for Java appears
to be a feasible choice, but in the C/C++ world there is
probably no really attractive choice today. The project ef-
fort published in this paper attempts to improve this situa-
tion, and there is a good chance that OMNeT++ can fill this
niche.

PARALLEL SIMULATION SUPPORT IN
OMNeT++

About OMNeT++

OMNeT++ (Varga, 2001) is a discrete event simulation en-
vironment. The primary application area of OMNeT++ is
the simulation of communication networks, but because of
its generic and flexible architecture, it has been success-
fully used in other areas like the simulation of complex IT
systems, queueing networks or hardware architectures as
well. OMNeT++ is rapidly becoming a popular simulation
platform in the scientific community as well as in indus-
trial settings. The distinguishing factors of OMNeT++ is
its strongly component-oriented approach which promotes
structured and reusable models, and its extensive graphi-
cal user interface (GUI) support. Due to its modular archi-
tecture, the OMNeT++ simulation kernel (and models) can
be easily embedded into your applications. OMNeT++ is
open-source and free for academic and non-profit use.

An OMNeT++ model consists of modules that communi-
cate with message passing. The active modules are termed
simple modules; they are written in C++, using the simu-
lation class library. Simple modules can be grouped into
compound modules. Both simple and compound modules
are instances of module types. While describing the model,
the user defines module types; instances of these module
types serve as components for more complex module types.
Finally, the user creates the system module as an instance
of a previously defined module type.

Modules communicate with messages which –in addition
to usual attributes such as timestamp– may contain arbitrary
data. Simple modules typically send messages via gates, but
it is also possible to send them directly to their destination
modules.

Gates are the input and output interfaces of modules:
messages are sent out through output gates and arrive
through input gates. An input and an output gate can be
linked with a connection. Connections are created within a
single level of module hierarchy: within a compound mod-
ule, corresponding gates of two submodules, or a gate of
one submodule and a gate of the compound module can be
connected.

Due to the hierarchical structure of the model, messages
typically travel through a chain of connections, to start and
arrive in simple modules. Compound modules act as ‘card-
board boxes’ in the model, transparently relaying messages
between their inside and the outside world. Connections
can be assigned properties such as propagation delay, data
rate and bit error rate.

PDES Features

This section introduces the new PDES architecture in OM-
NeT++ (OMNeT++ has had some support for parallel simu-
lation before, but it was sufficient only for experimental pur-
poses). In its current form it supports conservative synchro-
nization via the classic Chandy-Misra-Bryant (or Null Mes-

sage) Algorithm (Chandy and Misra, 1979). As of Septem-
ber 2003, the implementation is not yet publicly available
(beta versions are expected to be published in the first quar-
ter of 2004).

The OMNeT++ design places a big emphasis on sepa-
ration of models from experiments. The main rationale is
that usually a large number of simulation experiments need
to be done on a single model before a conclusion can be
drawn about the real system. Experiments tend to be ad-
hoc and change much faster than simulation models, thus it
is a natural requirement to be able to carry out experiments
without changing the simulation model itself.

Following the above principle, OMNeT++ allows sim-
ulation models to be executed in parallel without modifi-
cation. No special instrumentation of the source code or
the topology description is needed, as partitioning and other
PDES configuration is entirely described in the configura-
tion files (in contrast, ns2 (PADS Research Group) requires
modification of the Tcl source, and SSFNet requires modi-
fication of the DML file(s)).

OMNeT++ supports the Null Message Algorithm
(NMA) with static topologies, using link delays as looka-
head. The laziness of null message sending can be tuned.
Also supported is the Ideal Simulation Protocol (ISP) in-
troduced by Bagrodia in 2000 (Bagrodia and Takai, 2000).
ISP is a powerful research vehicle to measure the efficiency
of PDES algorithms, optimistic or conservative; more pre-
cisely, it helps determine the maximum speedup achievable
by any PDES algorithm for a particular model and simu-
lation environment. In OMNeT++, ISP can be used for
benchmarking the performance of the NMA. Additionally,
models can be executed without any synchronization, which
can be useful for educational purposes (to demonstrate the
need for synchronization) or for simple testing.

For the communication between logical processes (LPs),
OMNeT++ primarily uses MPI, the Message Passing Inter-
face standard (MPI). An alternative communication mech-
anism is based on named pipes, for use on shared mem-
ory multiprocessors without the need to install MPI. Ad-
ditionally, a file system based communication mechanism
is also available. It communicates via text files created in a
shared directory, and can be useful for educational purposes
(to analyze or demonstrate messaging in PDES algorithms)
or to debug PDES algorithms. Implementation of a shared
memory-based communication mechanism is also planned
for the future, to fully exploit the power of multiprocessors
without the overhead of and the need to install MPI.

Nearly every model can be run in parallel. The con-
straints are the following:

• modules may communicate via sending messages only
(no direct method call or member access) unless
mapped to the same processor

• no global variables

• there are some limitations on direct sending (no send-
ing to a submodule of another module, unless mapped
to the same processor)

• lookahead must be present in the form of link delays

• currently static topologies are supported (we are work-
ing on a research project that aims to eliminate this
limitation)

PDES support in OMNeT++ follows a modular and exten-
sible architecture. New communication mechanisms can be
added by implementing a compact API (expressed as a C++
class) and registering the implementation – after that, the
new communications mechanism can be selected for use
within the configuration file.

New PDES synchronization algorithms can be added in a
similar way. PDES algorithms are also represented by C++
classes that have to implement a compact API to integrate
with the simulation kernel. Setting up the model on various
LPs as well as relaying model messages across LPs is al-
ready taken care of and not something the implementation
of the synchronization algorithm needs to worry about it
(although it can intervene if needed, because the necessary
hooks are present).

The implementation of the NMA is also modular in itself
in that a lookahead discovery mechanism can be plugged
in via a defined API. Currently implemented lookahead dis-
covery uses link delays, but it is possible to implement more
sophisticated ones and select them through the configura-
tion file.

Parallel Simulation Example

For demonstrating PDES capabilities of OMNeT++, we
will use the closed queuing network (CQN) model de-
scribed in (Bagrodia and Takai, 2000). The model con-
sists of N tandem queues where each tandem consists of a
switch and k single-server queues with exponential service
times (Figure 1). The last queues are looped back to their
switches. Each switch randomly chooses the first queue of
one of the tandems as destination, using uniform distribu-
tion. The queues and switches are connected with links that
have nonzero propagation delays. Our OMNeT++ model
for CQN wraps tandems into compound modules.

�

�

�

�

�

�

Figure 1: The Closed Queueing Network (CQN) model

To run the model in parallel, we assign tandems to differ-
ent LPs (Figure 2). Lookahead is provided by delays on the
marked links.

�

�

�
�������

�����	�

������

Figure 2: Partitioning the CQN model

To run the CQN model in parallel, we have to configure
it for parallel execution. In OMNeT++, the configuration is
in a text file called ��
������������������ . For configuration, first
we have to specify partitioning, that is, assign modules to
processors. This is done with the following lines:

��� �"! �#�$�#�%�������'&'() �*� � � +���
�,%-��%-�� �/. (��10��%&%
2�����#3��$+54 .
) �*� � � +���
�,%-��%-�� �76 (��10��%&%
2�����#3��$+54 6
) �*� � � +���
�,%-��%-�� �/8 (��10��%&%
2�����#3��$+54 8

The numbers after the equal sign identify the LP. Also, we
have to select the communication library and the parallel
simulation algorithm, and enable parallel simulation:

�:9 ����� !'�'; (
� �"! �';�; � ; 3�0'��
�- ;�� �<�%����4�� ! -'�
� �"! 0'�7
�3�=���
�
 -�����= � �#�%�>�#0�3�= ;�� 0"0?4@ =>A �#B>C ��
�
�-�����= � �2�%�>�#0 @
� �"! 0'�7
�3�0>D��#=$E ! �����$F � �<�%�%��3�= ;�� 0�0G4@ =>H"- ;�; A � 0�0 � & � ��! �"����=�� ; @

When the parallel simulation is run, LPs are represented
by multiple running instances of the same program. When
using LAM-MPI (lam-mpi), the mpirun program (part of
LAM-MPI) is used to launch the program on the desired
processors. When named pipes or file communications is
selected, the opp_prun OMNeT++ utility can be used to
start the processes. Alternatively, one can launch the pro-
cesses manually:

�JI =%K"�L3$� .�MONQP
�JI =%K"�L3$� 6#MONQP
�JI =%K"�L3$� 8�MONQP

Here, the 3$� flag tells OMNeT++ the index of the given
LP and the total number of LPs. For PDES, one will usu-
ally want to select the command-line user interface of OM-
NeT++, and redirect the output to files (OMNeT++ pro-
vides the necessary configuration options.)

The GUI of OMNeT++ can also be used (as evidenced
by Figure 3), independent of the selected communication

mechanism. The GUI interface can be useful for educa-
tional or demonstration purposes as OMNeT++ shows the
operation of NMA in a log window, and one also can exam-
ine EIT and EOT values.

Figure 3: Screenshot of CQN running in three LPs

Instantiation of Modules

When setting up a model partitioned to several LPs, OM-
NeT++ uses placeholder modules and proxy gates. In the
local LP, placeholders represent sibling submodules that are
instantiated on other LPs. With placeholder modules, every
module has all of its siblings present in the local LP – ei-
ther as placeholder or as the “real thing”. Proxy gates take
care of forwarding messages to the LP where the module is
instantiated (see Figure 4).

The main advantage of using placeholders is that algo-
rithms such as topology discovery embedded in the model
can be used with PDES unmodified. Also, modules can
use direct message sending to any sibling module, includ-
ing placeholders. This is so because the destination of direct
message sending is an input gate of the destination module,
thus if the destination module is a placeholder, the input
gate will be a proxy gate which transparently forwards the
messages to the LP where the “real” module was instanti-
ated. A limitation is that the destination of direct message
sending cannot be a submodule of a sibling (which is prob-
ably a bad practice anyway, as it violates encapsulation),
simply because placeholders are empty and so its submod-
ules are not present in the local LP.

Instantiation of compound modules is slightly more com-
plicated. Since its submodules can be mapped to different
LPs, the compound module may not be “fully present” on
any given LP, and it may forced to be present on several
LPs (on all LPs where if one or more submodules instanti-
ated). Thus, compound modules are instantiated wherever
they have at least one submodule instantiated, and are rep-
resented by placeholders everywhere else (Figure 5).

����������	�

�������� ����������� ������ �!�"�����"	#
%$��
&('�)+*

����������	�

����!�"�����"	#
%$���,��� ����������� �-���,

&('.)0/ �1�-232546�87:9<;%=>�6? �6��=#�A@8�B4C

Figure 4: Placeholder modules and proxy gates

D�EGF H�I1J-K�L�F M�J�NPO!L�N
I�L�Q>E6LSR<TSMUQ�L�M�R�F J�VW�X,Y[Z6\]

Y_^�`ba.\]

c(d6ebf

gAh�ikj�lnmipo�qSr�lCmD,EGF H�I1J�K�s V
c>d6e0t

u v<w xAy{z}|�~ �

� ��� ���8����� �u v<w x1y{z�|�~ �

c(d.e��
gAh�ikj�lnmipo�qSr�lCm

Figure 5: Instantiating compound modules

Performance Measurements

We have made several runs with the CQN model on 2 and
4 processors, with the following parameters: N = 16 tan-
dem queues, k = 10 and 50 queues per tandem, with looka-
head L = 1,5 and 10. The hardware environment was an
Linux cluster (kernel 2.4.9) of dual 1 Ghz Pentium III PCs,
interconnected using a 100Mb Ethernet switch. The com-
munication library was LAM-MPI (lam-mpi). The MPI la-
tency was measured to be 22 µs. Sequential simulation of
the CQN model achieved Pseq = 120,000 events/sec perfor-
mance.

We executed simulations under NMA and (for compari-
son) under ISP. The results are summarized in Table 1. PISP,
PNMA are the performances (ev/sec) under the ISP and the
NMA protocol, and SISP, SNMA are the speedups under ISP
and NMA, respectively. It can be observed that the L looka-
head strongly affects performance under NMA. An analysis
of NMA performance versus lookahead and other perfor-
mance factors can be found in (Varga et al., 2003). How-
ever, it is probably too early to draw conclusions from the
figures below about the performance of the OMNeT++ par-
allel simulation implementation, because we are still opti-
mizing the code.

DESIGN OF PDES SUPPORT IN OMNeT++

Design of PDES support in OMNeT++ follows a layered
approach, with a modular and extensible architecture. The
overall architecture is depicted in Figure 6.

��� �:�P� ����� �"�3�<�"�8���G� � �����"� � �G�������:��� �-�}� ���
�<�����}�S�8�!�S�

�-�G�� <¡�������� ¢B����� �"�

£��"�:�¤���¥� B���}� �S�

� ���¦�}� �}� �S��� ��§

¨¥© ª[«.¬ ­-®�© ¯(°²±0¯.³�´(¬

µ�¶ �����¥�1 <¡���·"��� � ��§�¸
������·"� �<§�¸(�%�� {�"� ¶ � ��§

 B�"�k�:����� B����� �S���5�¹� ���¦���%�»º�¼ ��½ ¸6���� <¾����¹�B¸����� �¿%À

Figure 6: Architecture of OMNeT++ PDES implementa-
tion

The parallel simulation subsystem is an optional compo-
nent itself, which can be removed from the simulation ker-
nel if not needed. It consists of three layers, from the bottom
up: communication layer, partitioning layer and synchro-
nization layer.

The purpose of the Communication layer is to provide
elementary messaging services between partitions for up-
per layer. The services include send, blocking receive, non-
blocking receive and broadcast. The send/receive opera-
tions work with buffers, which encapsulate packing and un-
packing operations for primitive C++ types. The message
class and other classes in the simulation library can pack
and unpack themselves into such buffers. The Communi-
cations layer API is defined in the =�Á#� ; � C ��
�
�-��#��= � �#�����#0
interface (abstract class); concrete implementations like the
MPI one (=�A �#B>C �$
�
�-����"= � �#�%�>�#0) subclass from this, and
encapsulate MPI send/receive calls. The matching buffer
class =>A �#B>C ��
�
SÂ�-�Ã�Ã'� ! encapsulates MPI pack/unpack op-
erations.

The Partitioning layer is responsible for instantiating
modules on different LPs according to the partitioning
specified in the configuration, for configuring proxy gates.
During the simulation, this layer also ensures that cross-
partition simulation messages reach their destinations. It
intercepts messages that arrive at proxy gates and transmits
them to the destination LP using the services of the commu-
nication layer. The receiving LP unpacks the message and
injects it at the gate pointed to be the proxy gate. The im-
plementation basically encapsulates the = � �"! 0��7
GÄ��"&>
#���'� ,
= ��;�� =%�-Å � ; +�� ! A ��+%- ; � , = ��! �-Æ�D 9'� � � classes.

The Synchronization layer encapsulates the parallel
simulation algorithm. Parallel simulation algorithms
are also represented by classes, subclassed from the
= � �"! 0��7
GÄ"D��2=�E ! ���2�>F'� ! abstract class. The parallel sim-

LPs k L PISP PNMA SISP SNMA

2 10 1 147618 76042 1.23 0.63
2 10 5 151250 143289 1.26 1.19
2 10 20 157200 153600 1.31 1.28
2 50 1 168830 131398 1.41 1.09
2 50 5 170289 164563 1.42 1.37
2 50 20 172811 173249 1.44 1.44
4 10 1 300479 45190 2.50 0.38
4 10 5 311392 148007 2.59 1.23
4 10 20 314892 271648 2.62 2.26
4 50 1 359517 144979 3.00 1.21
4 50 5 364663 284978 3.04 2.37
4 50 20 372844 352557 3.11 2.94

Table 1: Comparison of NMA and ISP simulations

ulation algorithm is invoked on the following hooks: event
scheduling, processing model messages outgoing from the
LP, and messages (model messages or internal messages)
arriving from other LPs. The first hook, event schedul-
ing is a function invoked by the simulation kernel to de-
termine the next simulation event; it also has full access to
the future event list (FEL) and can add/remove events for
its own use. Conservative parallel simulation algorithms
will use this hook to block the simulation if the next event
is unsafe, e.g. the null message algorithm implementation
(=>H�- ;�; A ��0�0 � & � ��! �"�'� =%� ;) blocks the simulation if an EIT
has been reached until a null message arrives (see (Bagro-
dia and Takai, 2000) for terminology); also it uses this hook
to periodically send null messages. The second hook is
invoked when a model message is sent to another LP; the
NMA uses this hook to piggyback null messages on outgo-
ing model messages. The third hook is invoked when any
message arrives from other LPs, and it allows the parallel
simulation algorithm to process its own internal messages
from other LPs; the NMA processes incoming null mes-
sages here.

The null message protocol implementation itself is mod-
ular as it employs a separate, configurable lookahead dis-
covery object. Currently only link delay based lookahead
discovery has been implemented, but it is possible to imple-
ment more sophisticated ones.

The ISP implementation, in fact, consists of two parallel
simulation protocol implementations: the first one is based
on the NMA and additionally records the external events
(events received from other LPs) to a trace file; the second
one runs the simulation using the trace file to find out which
events are safe and which are not.

Note that although we implemented a conservative pro-
tocol, the provided API itself would allow implementing
optimistic protocols, too. The parallel simulation algorithm
has access to the executing simulation model, so it could
perform saving/restoring model state if the code of the
simulation model supports this (unfortunately, support for
state saving/restoration needs to be individually and manu-
ally added to each class in the simulation, including user-

programmed simple modules).
We also expect that because of the modularity, extensi-

bility and clean internal interfaces of the parallel simulation
subsystem, the OMNeT++ framework has the potential to
become a preferred platform for PDES research.

CONCLUSION

The paper presented a new parallel simulation architecture
for OMNeT++. A merit of the implementation is that it
features the “separation of experiments from models” prin-
ciple, and thus allows simulation models to be executed
in parallel without modification. It relies on a novel ap-
proach of placeholders to instantiate the model on differ-
ent LPs. The placeholder approach allows simulation tech-
niques such as topology discovery and direct message send-
ing to work unmodified with PDES. The architecture is
modular and extensible so it may serve as a potential frame-
work for research on parallel simulation.

References

R. Bagrodia and R. Meyer. PARSEC: A parallel simu-
lation environment for complex systems. IEEE Com-
puter Magazine, pages 77–85, oct 1998. URL http:
//citeseer.nj.nec.com/bagrodia98parsec.html.

R. L. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng,
J. Martin, and H. Y. Song. Parsec: A parallel simula-
tion environment for complex systems. IEEE Computer,
pages 77–85, October 1998.

R. L. Bagrodia and M. Takai. Performance evaluation
of conservative algorithms in parallel simulation lan-
guages. IEEE Transactions on Parallel and Distributed
Systems, 11(4):395–414, 2000. URL citeseer.nj.nec.com/
bagrodia98performance.html.

M. Chandy and J. Misra. Distributed simulation: A case
study in design and verication of distributed programs.
IEEE Transactions on Software Engineering SE-5, (5):

440–452, 1979. URL http://citeseer.nj.nec.com/context/
58222/0.

R. M. Fujimoto. Parallel discrete event simulation. Com-
munications of the ACM, 33(10):30–53, October 1990.

R. M. Fujimoto. Parallel and distributed simulation in
the 21th century. In Grand Challenges for Modeling
and Simulation (Seminar 02351), 26-30 August 2002,
Dagstuhl Castle, Germany, 2002. URL http://www.
informatik.uni-rostock.de/∼lin/GC/.

javasim. JavaSim home page. URL http://www.javasim.org.

J. Lai, E. Wu, A. Varga, Y. A. Şekercioğlu, and G. K. Egan.
A simulation suite for accurate modeling of IPv6 proto-
cols. In Proceedings of the 2nd International OMNeT++
Workshop, pages 2–22, Berlin, Germany, January 2002.

lam-mpi. LAM-MPI home page. URL http://www.
lam-mpi.org/.

MPI. MPI: A message-passing interface standard. Inter-
national Journal of Supercomputer Applications, 8(3/4):
165–414, 1994. Message Passing Interface Forum.

opnet. OPNET Technologies, Inc. home page. URL http:
//www.opnet.com/.

Atlanta PADS Research Group, Georgia Institute of Tech-
nology. PDNS - Parallel/Distributed NS home page.
URL http://www.cc.gatech.edu/computing/compass/
pdns.

C. D. Pham. High performance clusters: A promising en-
vironment for parallel discrete event simulation. In Pro-
ceedings of the PDPTA’99, June 28-July 1, 1999, Las Ve-
gas, USA, 1999.

qualnet. QualNet home page. URL http://www.qualnet.
com/.

speedes. SPEEDES home page. URL http://www.speedes.
com/.

ssfnet. SSFNet home page. URL http://www.ssfnet.org.

J. Steinman. Scalable parallel and distributed military sim-
ulations using the SPEEDES framework. ELECSIM ’95,
2nd Electronic Simulation Conference, Internet, May-
June, 1995.

A. Varga. The OMNeT++ discrete event simulation sys-
tem. In Proceedings of the European Simulation Multi-
conference (ESM’2001). June 6-9, 2001. Prague, Czech
Republic, 2001.

A. Varga, Y. A. Şekercioğlu, and G. K. Egan. A practical ef-
ficiency criterion for the null message algorithm. In Sub-
mitted to European Simulation Symposium (ESS2003),
Oct. 2003, Delft, The Netherlands. Society for Computer
Simulation, 2003.

AUTHOR BIOGRAPHIES

Y. Ahmet Şekercioğlu is a researcher at the Centre for
Telecommunications and Information Engineering (CTIE)
and a Senior Lecturer at Electrical and Computer Sys-
tems Engineering Department of Monash University, Mel-
bourne, Australia. He also holds the position of Pro-
gram Leader for the Applications Program of Australian
Telecommunications Cooperative Research Centre (ATcrc,
http://www.atcrc.com). He completed his PhD degree at
Swinburne University of Technology, Melbourne, Australia
(2000), MSc (1985) and BSc (1982) degrees at Middle East
Technical University, Ankara, Turkey (all in Electrical En-
gineering). He has lectured at Swinburne University of
Technology for 8 years, and has had numerous positions
as a research engineer in private industry.

His recent work focuses on development of tools for sim-
ulation of large-scale telecommunication networks. He is
also interested in application of intelligent control tech-
niques for multiservice networks as complex, distributed
systems.

His e-mail address is : ��Ä���� � ! ='���<�%�������J� ! & and his
Web-page can be found at http://titania.ctie.monash.edu.au.

András Varga received his M.Sc. in computer science
with honors from the Technical University of Budapest,
Hungary in 1994. He worked for several years as soft-
ware architect for Encorus (formerly Brokat Technologies),
which has provided distributed application server technolo-
gies for financial institutions in Europe and Asia, and now
focusing on Internet and mobile payment solutions.

He is the author of the OMNeT++ open-source network
simulation tool currently widely used in academic and in-
dustrial settings, and founder of Omnest Global, Inc. which
provides commercial licenses and services for OMNeT++
worldwide. He is currently working towards PhD, his re-
search topic being large-scale simulation of communication
networks. Between February and September 2003 he vis-
ited CTIE at Monash University (Melbourne, Australia) to
participate in the parallel simulation research project.

Gregory K. Egan’s principal research interests are
the design, programming and the application of high-
performance parallel distributed computer architectures.

He is currently Professor of Telecommunications and In-
formation Engineering, Director of the Centre for Telecom-
munications and Information Engineering and Head of the
Department of Electrical and Computer Systems Engineer-
ing at Monash University in Australia.

	c0: Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)
(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

