g

North-Holland Publishing Company
Microprocessing and Microprogramming 7 (1981) 119-123

119

Object Recognition Using a Data-Flow

Computing System

G.K. Egan and C.P. Richardson

Department of Computer Science, University of Manchester,
Manchester M13 9PL, England

Considerations of cost, performance, reliability and flexibility
are leading to the increasing decentralisation of computing
systems in control applications. A decentralised computing
system based on the data-flow model of computation is
applied, in conjunction with a laser range-finder, to the task of
recognising a number of simple objects in a work-space. The
recognition process involves a combination of active
interrogation and multiple-hypothesis testing. Processing-
elements in the system need not be identical and may be based
on conventional microprocessors.

1. Introduction

Considerations of cost, performance, reliability
and flexibility considerations are leading to the in-
creasing decentralisation of computing systems in
control applications [11, 12, 15, 16].

An area of particular interest is that of produc-
tion systems where attempts to reduce work-piece
positioning costs, and increase performance and
flexibility, demand more sophisticated manipu-
lative and sensory mechanisms coupled with the
computing systems to support them.

We describe how a decentralised computing
system might be used in conjunction with a laser
range-finder to recognise objects in a work-space
[14]. The computing system [5, 6] is based on the
Data-flow model of computation and seeks to
overcome many of the problems inherent in con-
ventional systems [2]. Processing-elements in the
system need not be identical and may be based on
conventional microprocessors. A critique of other
major dataflow architectures may be found in [5].

2. Data-Flow

Data-flow [1, 10] uses a finite directed-graph to

describe a computation. The edges or arcs of the
graph are queues of data directed from one node to
another. The nodes represent functions which map
input data onto output data.

Data flows down the arcs as packets or rokens,
each node requiring a specific number of tokens to
trigger the node-function’s evaluation. The evalua-
tion or firing consumes tokens from the input arcs
and places result tokens on the output arcs. The
number of nodes eligible for firing at any instant
depends only on the availability of data.

In addition to the more primitive node-functions
(arithmetic, logical etc.), node-functions exist for
the data-dependent control of computational paths
through the graph. See Fig. 1.

)

if (a~b) = 0 then ¢ -> d else ¢ ~-> e

Fig. 1. Example of Computational Path>Control.

3. The Computing System

The computing system used in this study [5, 6] may
be characterised as follows:

1) Tokens are strongly typed and of variable
length. They carry not only the data used by the
graph during its evaluation but the node-descrip-
tions which comprise the graph itself.

2) Node-functions are weakly typed and accept
a set of argument token-types; this increases graph
generality while reducing the size of the node-

120 G.K. Egan, C.P. Richardson / Object Recognition Using Data-Flow Computing

function set. Type coercion is performed auto-
matically where ‘sensible’.

3) Input—output is accomplished using pre-
defined nodes. The names of these nodes are assoc-
iated with particular input or output devices,
which in turn are associated with particular pro-
cessing-elements. As these nodes already ‘exist’
within the system, they must be linked into the
graph at load or evaluation times this is done by
sending response-destination tokens to the
appropriate nodes.

4) Because of the association of input—output
devices with particular processing-elements, and
the system’s probable geographic distribution,
graphs are partitioned and the partitions allocated
statically to processing-elements.

5) Storage nodes are provided to allow the
graph to retain ‘semi-permanent’ information.

6) Information describing exceptions occurring
during graph evaluation is communicated to the
graph using the token-type ?, or don’t-know.

7) The system supports shared sub-graphs in
sufficient generality to allow multiple recursion.
Tokens involved in concurrent invocations of a
shared sub-graph are separated by means of a copy
number. The copy number is computed and
appended only to tokens actually sharing a sub-
graph. Less sophisticated processing-elements at
the periphery of the system need not support the
mechanism.

8) The hardware underlying the system consists
of an arbitrarily large number of processing-
elements, communicating over channels which
may be asynchronous and unsophisticated.

For this study the computing system, laser range-
finder and object space were simulated on a large
conventional computing system [7]. The simulator,
written in Pascal [9], can evaluate graphs with the
order of 16000 nodes while modelling 128 proces-
sing-elements. Graphs are evaluated by the simu-
lator at approximately 500 nodes/second.

4. The Laser Range-Finder
Laser range-finders can be used to interrogate a

work-space directly [3, 8]. In doing so they have
distinct advantages over more common video-

camera based techniques which tend to be both
indirect and storage intensive.

For this study the range-finder is assumed to be
at the origin of a cartesian work-space. Objects
rest on the positive X—Y plane and the laser may
be vectored in the positive X—Y (6) and Y-Z
planes (#). The range-finder returns the distance
from the origin to the spot illuminated by the laser.

5. Object Recognition

Object recognition, like many control problems,
exhibits a high degree of parallelism; a data-flow
system should be capable of exploiting this parallel-
ism,

5.1. An Approach Suitable for a Data-flow System

Employing a data-flow system precludes the use of
any storage-intensive algorithms. Data is produced
and consumed in the evaluation of a node-func-
tion; there are no global variables. Scene analysis
techniques such as those proposed by Nitzan et al.
[13] cannot be used on a data-flow system without
introducing considerable inefficiency.

Ishii and Nagata used a laser-tracker to actively
interrogate a work-space [8]. The interrogation
was driven by a multiple hypothesis process, each
hypothesis corresponding to an object in the set of
recognisable objects. Their method, which is not
storage intensive, lends itself well to data-flow
systems where all hypotheses may be tested simul-
taneously.

5.2. The Range-finder and Object Set

The range-finder is represented in the system by a
two-input node. This node accepts two integer
operands and returns a real token corresponding to
the distance to the spot illuminated by the laser; a
negative range is returned when the laser misses.

The range-finder node is embedded in a shared
sug-graph to accurately represent the bottleneck of
a single resource.

To aid in producing the recognition graph the
following assumptions were made about the visual
environment:

G.K. Egan, C.P. Richardson / Object Recognition Using Data-Flow Computing 121

1) All objects lie within a cube with the range-
finder at one corner.
2) All objects are in the specified object set.
3) Objects may overlap.
4) Objects are not placed one on top of the other.
5) The objects do not move!
For this initial study the object set was kept to
three objects mathematically easy to represent.
These objects were a sphere, a cone and a cylinder.

5.3. The Processes Involved in Object Recognition

The task of recognition may be divided into five
distinct processes:

1) Finding an object: This process was imple-
mented as a doubly recursive sub-graph taking as
input parameters an interval in §. A vertical line
bisecting the interval is scanned. Should a hit be
obtained (indicated by a range discontinuity) the
value of @ is returned. Otherwise the two intervals
generated by bisection are processed simul-
taneously in the same manner.

2) Delimiting the object: Once a hit on an object
is obtained, parameters must be generated for
passing to the hypothesis tests. The parameters
chosen for specifying an object to the tests were the
four bounding angles #.left, 6.right, @.top and
f.bottom. These are obtained through literative
routines which scan the object vertically or horiz-
ontally at a particular interval seeking the edge.
When the edge is passed, the interval is halved and
the direction of scanning reversed. The edge of the
object is thus found and the bounding angles ob-
tained. ‘

3) Resolution of clusters: At this stage checks
are made to ensure that the object is not in fact a
cluster of two or more objects. This is done by
inspecting the range profile for discontinuities.
Should such a break be found the parameters are
adjusted so that the objects furthest away in the
cluster are ignored and the parameters for the
nearest object are sent on to the hypothesis testing
sub-graphs.

4) Hypothesis testing: Each hypothesis is tested
in a similar way. A set of angular coordinates over
the object are generated and the range profile for
these points is predicted. The actual range profile
is then obtained using the range-finder and the two

sets of range values compared. Statistical analysis
is then carried out on the differences to produce a
probability that the object is the one being tested
for.

5) Results: A result is then obtained by voting
on the probabilities issued by the hypothesis sub-
graphs. The appropriate action on recognition may
then be taken.

6. Results
6.1. A Typical Run

The entire object recognition graph required about
2000 nodes of which 70% were one-input nodes.
The large percentage of one-input nodes means less
token matching overheads on two-input nodes
than might intuitively be expected. Figure 2 shows
the processing-element activity for a typical run.

401

Active

30
20

10}

Processing - elements

1000 2000 3000
Simulator Time-steps

F

g. 2. Processing-element Activity for a Typical Run.

There were two objects present in the space which
did not overlap. The activity shown is variable.
Average achieved parallelism was 13.2 but at
points on the graph the parallelism went as high as
30.0. These points were where multiple hypothesis
testing (C) was carried out and the point where the
recursive search for objects was active (A).

It is important to note that the object recognition
process has, in approximately 3000 time steps,

122 G.K. Egan, C.P. Richardson / Object Recognition Using Data-Flow Computing

located and recognised a// objects in the work-
space; an average time step, or node evaluation
time, of 20 uSec. is not unreasonable with bit-slice
microprocessor-based processing-elements.

The variable nature of the activity indicates
under-utilisation of the system which is to be ex-
pected given the small number of objects in the
object set. Normally the object set would be larger
and the system would support other sensors and
devices including perhaps a manipulator.

Construction of the object recognition graph
was straight-forward. A comprehensive macro-
asembler capable of planting the primitives for
shared sub-graphs was written [14], which enabled
the graph design to proceed in a modular and
structural fashion.

A point to note is the small size of the graph in
terms of nodes or machine instructions; there is no
need for a complex operating system to schedule
the system’s workload as this is determined solely
by the availability of data.

6.2. Effects of Partitioning and Resource Sharing

The laser range-finder is controlled by a sub-graph
in the overall object recognition graph or program.
This sub-graph is in practice shared by the various
hypothesis sub-graphs.

To illustrate the effect of graph partitioning and
resource sharing (the laser range-finder) we con-
sider three simple cases:

1) The normal case where the nodes of the sub-
graph controlling the range-finder are assigned to
separate processing-elements. No other graph
nodes are assigned to these processing-elements.

2) The case where this simple partitioning
measure is not performed and the range-finder
sub-graph nodes are distributed randomly among
the processing-elements along with the rest of the
object recognition graph nodes.

3) The case where invocations, or calls, of the
range-finder sub-graph are replaced by a copy. of
the sub-graph.

The graphs of average achieved parallelism
against number of stimuli (external simultaneous
requests to the graph to recognise an object in the
space) was plotted for all three cases and is shown
in Figure 3.

501
Replicated Rescurce
40
Simple Partitioning
301

No Partiticening

~N
=3
+

—
<

Average Achieved Parallelism

1 2 4 8
Number of Stimulii

Fig. 3. Parallelism Against Number of Stimuli for Cases of
Normal, No Partitioning and Replicated Resource.

7. Discussion

The initial results obtained in this study have been
encouraging. The Data-flow computing system
used seems quite adequate when dealing with what
is a real problem; the class of similar problems is
large.

While graph partitions are usually suggested by
the problem structure, additional research into
partitioning strategies is necessary if the full poten-
tial of the system is to be realised. The assembler
used was adequate for this initial study but a need
for languages better matched to the application is
indicated.

Current research with the system includes the
following:

1) Application-specific languages and their com-
pilation on data-flow systems.

2) A detailed study of system aspects associated
with time and non-determinacy.

3) ‘Fast’ processing-elemeﬁts.

4) Communication techniques for systems of
closely coupled processing-elements.

5) Computer assisted graph partitioning with prac-
tical constraints.

6) Manipulator control algorithms.

Acknowledgements

The authors wish to thank the University of

Manchester’s Department of Computer Science
for the provision of computing and engineering
facilities during the course of the research leading
to this paper.

C.P. Richardson would also like to thank the
government of Barbados for its financial support.

References

[11 D.A. Adams, ‘A Model for Parallel Computations’, in
Hobbs (ed] Parallel/ Processor Systems, Technologies and
Applications, Spartan Books, 1970

[2] +J. Backus, ‘Can Programming be Liberated from the von
Neumann Style? A Functional Style and Its Algebra of
Programs’, CACM Vol. 21 No. 8, pp. 613 641, Aug.
1978.

[3] H.J. Caulfield et al., ‘Laser Stereometry’, Proceedings of
the |IEEE, Vol. 65, No. 1, pp. 84—-88, Jan. 1977.

[4] ' P. Coiffet etal., ‘Real Time Problems in Computer Control
of Robots’, Proceedings of the 7th International Sym-
posium on Industrial Robots, pp. 146—152, Oct. 1977.

[6] 'G.K. Egan, ‘A Study of Data-flow: Its Application to
Decentralised Control’, Ph.D. thesis, Dept. of Computer
Science, University of Manchester, 1979.

[6] +G.K. Egan, ‘A Decentralised Computing System Based
on Data-Flow’, Proceedings of the IECI’'80 Conference,
Mar. 1980.

[7] :R.N. Ibbett and P.C. Capon, ‘The Development of the
MU5 Computer System’, CACM Vol. 21 No. 1, Jan. 1978.

[8] :M. Ishii and T. Nagata, ‘Feature Extraction of Three
Dimensional Objects and Visual Processing in a Hand—
Eye System Using a Laser Tracker’, Pattern Recognition,
Vol. 8, pp. 229-237, 1970.

123

[9] K. Jensen and N. Wirth, Pascal-User Manual and Report,
Springer-Verlag, New York, 1975.

[10] R.M. Karp and R.E. Miller, ‘Properties of a Model for
Parallel Computations: Determinacy, Termination and
Queueing’, SIAM J. Applied Mathematics, Vol. 11 No. 6,
pp. 1390—1411, Nov. 1966.

{111 J.Y.S. Luh and C.8. Lin, ‘Multi-processor Controllers for
Mechanical Manipulators’, Proceedings of the
COMPSAC’79 Conference’, pp. 4568—463, Nov. 1979.

[12] R. Mori et al., ‘Microcomputer Applications in Japan’,
|EEE Computer, Vol. 12 No. 5, pp. 64-74, May 1979,

[13] D. Nitzan et al., ‘The Measurement and Use of Registered
Reflectance and Range Data in Scene Analysis’, Pro-
ceedings of the IEEE, Vol. 65, No. 2, Feb. 1977.

[14] C.P. Richardson, ‘Object Recognition using a Data-flow
Machine: Algorithms for a Laser Range-finder’, M.Sc.
dissertation, Dept. of Computer Science, University of
Manchester, 1979.

[15] N.R. Sandell et al., ‘Survey of Decentralised Control
Methods for Large Scale Systems’, IEEE Transactions on
Automatic Control, Vol. AC-23 No. 2, pp. 108-128, Apr.
1978.

[16] B. Shimano, ‘VAL: A Versatile Programming and Control
System’, Proceedings of the COMPSAC'79 Conference,
pp. 878-883, Nov. 1979.

Dr. Gregory K. Egan has been pursuing research into the
design and application of decentralised data-driven multi-
processor systems since 1976. Initially his research was con-
ducted at Manchester and is now being continued at the Royal
Melbourne institute of Technology’s department of Communi-
cation and Electronic Engineering in Australia.

Christopher P. Richardson is a student of Computer Science
at Manchester where he is pursuing research into the applica-
tion of a dataflow system to the problems of manipulator
control.

