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Abstract: The aim of this paper is to investigate the feasibility of robust H2 and H1 autopilots to the longitudinal
flight motions of a flying wing unmanned aerial vehicle (UAV), P15035, developed by Monash Aerobotics
Research Group. The challenge associated with this UAV is related to the fact that all motions are controlled
by two independently actuated ailerons, namely elevons, together with its throttle. The scope of this research
is nonetheless limited only for elevon control based on the trimmed linear longitudinal flight modes obtained
experimentally from the previous study, while the throttle is a constant. Since the real environment is subject
to modelling uncertainties and variations, robust H2 and H1 control systems are designed to withstand such
uncertainties and variations. Simulations indicate that the control systems designed poss acceptable
performances both in time and frequency domain, with reasonable settling time and overshoots while
maintaining reasonably robust stability. It further shows that robust H1 autopilot has demonstrated superior
time domain performances compared with the H2 counterpart.
:

1 Introduction
The ultimate design that the unmanned aerial vehicle (UAV)
engineers wish to achieve is to provide autonomous systems
from taking off, cruising to landing. In order to achieve
this goal, feedback control systems must satisfy both robust
stability and robust performances for a particular dynamic
system. The main reason to employ robust control is in fact
to overcome the existing disturbances, for example,
atmospheric turbulences, noise, as well as uncertainty in
modelling.

Our research aircraft P15035 (Fig. 1) belongs to the class
of aircraft called flying wings and is known colloquially as a
‘plank’ having an unswept constant chord (width) wing of
low aspect (length to width) ratio and no rudder or elevator
in the sense of a more conventional aircraft (see Table 1 for
technical details). A number of advantages have been
claimed for flying wings including reduced parasitic drag
due to the absence of an extended tail and associated
elevator and rudder control surfaces. In our case we chose a
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plank as it is very rugged, of compact construction and has,
at least for human pilots, very benign flight behaviour and
wide airspeed range; autopilot design and tuning is a little
more challenging.

The P15035 has two elevon control surfaces which
combine the functions of elevators and ailerons. Pitch is
controlled by the average deflection of the elevons and roll
by the difference. While there is a vertical stabiliser it has
no attached rudder and so yaw control is indirect through
roll. The aircraft does not have the usually long moment
arm provided by elevators; it must rely upon a slight
upsweep in the rear of the airfoil to maintain a positive
pitching moment to overcome the moments introduced by
a forward centre of gravity this being essential to maintain
stability. Partially as a consequence of this there is an
increased coupling between throttle and pitch. We have
assumed constant cruise throttle setting in this paper.

To further complicate matters we fly at relatively at low
Reynolds number (,250 K) regimes, which means turbulent
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flow and laminar separation across wing surface. Air
turbulence is also of concern due to the size of the aircraft,
see [1–3] for more comprehensive explanations. As a
result, the aircraft dynamics are obviously nonlinear and at
times varying. In relation to this matter, interested readers
are suggested to refer to [1–3] and also [4–7]. More
comprehensive information regarding this small UAV
controls is given in Section 2.

Our preliminary work in identification for the aircraft has
been published in [1], with extension to this work is found in
[2, 3]. Relevant control theory related to system identification
could be found in [8–11]. Topics correspond to robust
control synthesis may be found in [14–16]. Extended
theory about dynamic systems may be found in [17–19].
In addition, we have at our disposal a large repository of
flight logs for our aircraft. It contains the complete
dynamics record of flight data [20].

In the model-based control system, especially the observer-
based ones, there always exist uncertainty and modelling
errors. Since the identified model is used to design the
real-time control systems, consequently, this will certainly
degrade the robustness of the closed-loop control system.
In worst case, the design results may not work practically
due to the lack of robustness. As a result, robust control
systems have been widely developed. Yet another advantage

Figure 1 P15035 aircraft

(Reproduced with the permission of J. Bird, a member of Monash
Aerobotics Research Group)

Table 1 Specifications of Aircraft P15035

span 150 cm motor electric

chord 35 cm duration 40–60 min

length 106 cm speed 33–150 km/h

control
surface

elevon battery 28 � GP3300NiMh

weight 2.9–4.6 kg autopilot MP2028
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of employing robust control is when it comes to the
simplicity in designing for multivariable systems.

In this study, we consider designing robust autopilot using
H2 and H1 synthesis. It is well known that H2 synthesis is
equivalent to linear quadratic gaussian (LQG) optimal control
design. Regarding to its preliminary design results, interested
readers are suggested to refer to [2, 3]. Some recent works on
robust control may be found in [21–23]. The term ‘synthesis’
refers to theoretical development, precise and unambiguous,
whose aim is mainly pedagogical [16].

Furthermore, the availability of robust control toolbox in
MatLab has simplified the composition process. The offline
computation algorithm also has made the composition
process more computationally intensive rather than the
real-time control loops computed in flight, where we have
electrical and computational power limitations [3].

The organisation of this paper is as follows. First, Section 1
depicts some issues related to background, organisation and
motivation of this research. In Section 2, the open-loop
mathematical model of elevon-average-to-altitude is
introduced together with the study of its time domain
characteristics. Sections 3 deals with some robustness
issues. Subsequently, in Sections 4–6, robust autopilot H2

and H1 will be synthesised together with the study of both
their frequency domain as well as time domain
performances. Lastly, conclusions will be drawn in Section 7.

2 Open-loop mathematical model
Generating a comprehensive nonlinear model for the aircraft is
usually impractical. Instead, a more realistic approach is to
develop a set of linearised models valid for different dynamic
ranges. Longitudinal and lateral models for conventional larger
aircraft are well understood [8–11]. It is assumed that the
longitudinal dynamics is to be uncoupled from its lateral
motions. Pitch is controlled by the average deflection of the
elevons, meanwhile, roll is controlled by the elevon deflections
in an attempt to control yaw and to minimise the adverse drag.

The longitudinal and lateral directional models for the
P15035 have been obtained using system identification
techniques [9–11] based on real flight data and were initially
reported in [1]. Consider the trimmed model in which the
throttle is constant, two controllable inputs of the model are
right elevon, left elevon and three outputs are given by
output state vector [p, q, r]T, representing rates of pitch, roll
and yaw vectors, respectively. Hence, the linear trimmed
model of our flying wing UAV can be depicted as follows [1]

p
q
r

2
4

3
5 ¼

G11 G12

G21 G22

G31 G32

2
4

3
5 dl

dr

� �
(1)

where dl and dr represent left and right elevons, respectively,
(degree) and Gij are the corresponding transfer functions.
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Due to the symmetrical properties of the aircraft about its x–z
plane, consequently, the effects of left and right elevons are
identical to the pitch but opposite to the roll and yaw,
therefore we have that G11 ¼ G12, G21 ¼ 2G22,
G31 ¼ 2G32. By denoting GP ¼ G11, GR ¼ G21 and
GY ¼ G31, it eventually leads to the following equation [1]

p
q
r

2
4

3
5 ¼

GP 0
0 GR

0 GY

2
4

3
5 dA

dD

� �
(2)

where dA and dD are associated with elevon average and elevon
difference, respectively, given by dA ¼ dlþ dr (or
dA ¼ (dlþ dr)/2, if Gp becomes 2Gp) and dD ¼ dl2 dr.
From (2), pitch is independently controlled by elevon average
deflection dA, corresponding to the elevators of a
conventional aircraft, and roll and yaw are both driven by
elevon difference dD, corresponding to the aileron and
rudder for a conventional aircraft. Consequently, no
decoupling can be made between yaw and roll due to special
configuration of the aircraft.

For trimmed flight with a constant engine thrust the
P15035’s longitudinal discrete time transfers function from
the elevon average deflection dA to the pitch angle u

(which is the integral of pitch rate) with a sampling
frequency of 5 Hz is obtained as

u(z)

d(z)

����
5Hz

¼
�0:13065z2(zþ 0:0091)

(z� 0:9115)(z� 0:9785)(z2 þ 0:2267zþ 0:3763)

(3)

in which its complex conjugate poles are given
by:z ¼ 20.1134 + 0.6029i.

Converted to s domain, it becomes

u(s)

dA(s)
¼

�0:2954(s þ 6:693)(s2 þ 11:7s þ 91:49)

(s þ 0:4633)(s þ 0:1087)(s2 þ 4:887s þ 83:12)

(4)

with a pair of complex conjugate pole given by: s ¼ 22.4435
+ 8.7835i.

It is well known (e.g. [4, 5, 7, 24]) that the typical
longitudinal dynamics of a traditional aircraft (elevator to
pitch) with a constant engine thrust can be expressed as:

u(s)

d(s)
¼

ku(s þ 1=Tu1
)(s þ 1=Tu2

)

(s2 þ 26pvps þ v2
p)(s

2 þ 26svss þ v2
s )

(5)

In (5) d is now the elevator angle [instead of the elevon
average in (4)], ku the high-frequency gain,
Dsp ¼ s2þ 26pvpsþ vp

2 the so-called phugoid mode,
and Dss ¼ s2 þ 26svss þ v2

s the short period mode, 6p and
6s the damping factors and vp and vs the undamped
natural frequency of the two modes, respectively. Typically,
Control Theory Appl., 2008, Vol. 2, No. 7, pp. 583–594
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the phugoid mode is overdamped with a relatively large
time constant and the short period mode represents
underdamped oscillations. The overall pitch step response
is a combination of a slow exponential function and quickly
decaying high-frequency oscillations.

Comparing (4) with (5), it can be seen that the
longitudinal model (4) has an over damped phugoid model
given by Dsp ¼ (sþ 0.4633)(sþ 0.1087) with a dominant
large time constant of t ¼ 10 s. Its short period model is
given by Dss ¼ s2þ 4.887sþ 83.12 with a damping ratio of
0.268 and a natural frequency of 9.12 rad/s. The settling
time is small, being in the order of 1 s. The impulse
responses are plotted in Fig. 2.

Since in this research,we are considering the altitude-holding
control we need to determine the elevon-to-altitude transfer
function for autopilot designs. Given the pitch-to-altitude
transfer function in z domain with a sampling frequency
of 5 Hz as

h(z)

u(z)
¼

0:05456z

z� 0:9969
(6)

where h is the altitude of the aircraft in metres obtained from
flight data modelling. We finally obtain the following elevon-
to-altitude transfer function in s domain as:

h(s)

dA(s)

¼
�0:011659(s2þ11:88sþ42:46)(s2þ9:723sþ99:83)

(sþ0:4633)(sþ0:1087)(sþ0:01552)(s2þ4:887sþ83:12)

(7)

From (7) the linearised model of the longitudinal dynamics
can be expressed in state space equations given by

_x¼AxþBu

y¼CxþDu
(8)

Figure 2 Impulse pitch amplitude responses in degrees for
phugoid and short period modes of UAV P15035
585
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in which, u ¼ dA, y ¼ h and x is the state vector defined
accordingly:

A¼

�5:4740 �86:0500 �49:120 �4:9270 �0:0650

1 0 ,0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

2
6666664

3
7777775
,

B¼ 1 0 0 0 0
� �T

,

C¼ [�0:0117�0:2519�3:0060�18:640�49:4200],

D¼ [0]

The open-loop impulse responses of elevon-average-to-pitch
as well as elevon-average-to-altitude are given by Fig. 3. It
turns out that the final dc values of both pitch and altitude
with respect to a unit step input are negative constants, that
is, 2k and 2c, where k = c, as we expect in real flight. The
reason to employ different sampling rate is due to the fact
that altitude changes are very slow compared with the
airframe rates. While we could run all of the loops at a high
rate there is usually a computational throughput limit in the
control processor which forces us to run only the primary
attitude loops at the high rate.

Meanwhile, the open-loop altitude frequency response is
depicted in Fig. 4. The negative open-loop gain margin
indicates that the open-loop rigid body model experiences
lack of robust stability and performances.

3 Uncertainty and robustness
issues
This section deals with synthesis and analysis of robust
autopilot to the longitudinal flight motion of the UAV,

Figure 3 Open-loop time domain responses of elevon-
average-to-pitch and elevon-average-to-altitude
he Institution of Engineering and Technology 2008
P15035. Some robustness issues will be depicted first,
before subsequently followed by problem its formulations
including performances and robustness objectives and also
the design procedures.

3.1 Signal and system norms

As a standardmeasure of howbig the signal x(t) under sinusoidal
excitation, the definition of a particular system gain can be
represented using different norms, that is, [16]:

† The L2-norm represents the total energy associated with
the signal, given by:

kxk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1
0

x2(t) dt

s

† The L1-norm is given by:

kxk1 ¼ sup
t

jx(t)j

It is the magnitude of the peak value of the Bode
diagram.

Subsequently, in this section we will be depicting two
important system norms, that is,

† For a stable single input single output (SISO) linear
system with transfer function G(s), the H2-norm is defined
as:

kGk2 ¼
1

2p

ð1
�1

jG( jv)j2dv

� �1=2

† In addition to theH2-norm,H1-norm provides a measure
of the worst case system gain. For a stable SISO linear system

Figure 4 Frequency response of the open-loop elevon-
average-to-altitude
IET Control Theory Appl., 2008, Vol. 2, No. 7, pp. 583–594
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with transfer function G(s). The H1-norm is given by:

kGk1 ¼ sup
v

jG(jv)j

3.2 Classical stability margin

Classical stability margin can be represented using two
parameters, that is, gain margin (GM) and phase margin
(PM). GM can be defined as the factor by which the gain
can be increased before the system is unstable. It also
becomes the standard measure of the system’s relative
stability. The GM of a stable system has to be positive.
This is also desirable from the point of view of robustness.
Another parameter associated with relative stability is called
PM, which indicates the additional phase lag that will
make the system marginally stable.

3.3 Robust stability margin

For stability analysis, the command reference signal is not
required; it can be set to zero. Let D( jv) be the maximum
uncertainty that can be tolerated by the closed-loop control
system while still maintaining its stability, and
To( jv) ¼ Lo=(1þ Lo) be the complementary sensitivity
function in which Lo is the open-loop gain (as shown in
Fig. 5), according to the small gain theorem the stability of
closed-loop system can be guaranteed if kD( jv)To

( jv)k1 , 1. It can be rewritten as:

jD( jv)j ,
1

jTo( jv)j
, 8v (9)

Suppose the closed-loop transfer function varies from T (s) to
T (s)þ DT (s) due to the variation of plant parameters from
G(s) to being G(s)þ DG(s), the sensitivity function S(s),
defined as the ratio of fractional changes in the closed-loop
system to the fractional change in the open-loop system,
given as:

S(s) ¼ Lim
jDG(s)!0j

DT=T

DG=G
¼

1

1þ GK
(10)

It is now obvious that in order to retain good performance
and disturbance rejection jSoj has to be small. On the other
hand, for the sake of stability robustness and noise
suppression, the magnitude of the nominal complementary

Figure 5 Robust stability represented in collapse block
diagram

(The negative sign indicates negative feedback applied under zero
initial condition)
Control Theory Appl., 2008, Vol. 2, No. 7, pp. 583–594
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sensitivity function jToj has to be small as well, particularly
at higher frequency.

However, due to the relation T (s)þ S(s) ¼ 1, it is not
possible to keep both sensitivity and the complementary
function small at the same instance due to the well-known
‘water bed effect’. What is achievable instead is to make a
trade-off between those two objectives. Mathematically,
Bode’s sensitivity integral, for a stable system which has no
right-half plane zeros, states that:

ð1
0

log10 jS( jv)jdv ¼ 0 (11)

Equation (11) indicates that as jSoj is pushed down on one
particular frequency, it will pop up somewhere else in other
frequency ranges. In particular, jS( jv)j and jT( jv)j cannot
be ,50% at the same frequency [16]. As a common
practice, for low frequency around the design bandwidth,
denoted by [0, vb], sensitivity is kept to be small, while
for the remaining bandwidth, given by [vb, 1], the
complementary sensitivity function is set to be small. The
reason for that is due to a good compromise of
performance and robustness at this designated frequency
region [12–16].

3.4 Robust autopilot problem
formulations

We bring our SISO system originally into its equivalent multi
input multi output (MIMO) model formulation, which is
indeed a more realistic problem formulation. The plant in
Fig. 6 can be represented in the following extended state
space diagram in 14 as follows

_x ¼ Axþ B1wþ B2u

z ¼ C1xþD11wþD12u

y ¼ C2xþD21wþD22u

(12)

where z is the regulated outputs, that is, the signal we are
interested in controlling (in this research: altitude and its
control signal), meanwhile, y is signals that are measured
and fed back, see (25), become the input of controller.
Also, w, u and x correspond to the existing disturbances,
input elevon average, and states of the system, respectively.
The state space equations in (12) can be expressed in the

Figure 6 Two-port block diagram (as a standard problem
formulation in robust control) and s ¼ (jv)
587
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extended matrix P (s) as follows:

P(s) ¼
A B1

..

.
B2

C1 D11
..
.

D12. . . . . . . . . . . . . . . . . .

C2 D21
..
.

D22

2
664

3
775 (13)

Robust H2 control K(s) stabilises the plant and has the same
number of states as its open-loop plant P (s). As distinct from
H1 control, H2 optimal cost is defined as g ¼ Tyu

			 			
2
[25].

Moreover, the resulting robust H2 control law is given as:
u2 ¼ K (s)Y (s).

Figure 7 Open-loop transfer function of H2 system
The Institution of Engineering and Technology 2008
4 Robust H2 design
The optimal solution in H2 synthesis is obtained by solving
two Ricatti equations. The resulting Bode diagram and
Nyquist plot of the compensated open-loop transfer
function of G(s)K(s) using H2 is given in Fig. 7, in which
its GM and PM for the compensated system are
GM ¼ 21.1356 dB and PM ¼ 76.37428, respectively.

Since both GM and PM expressed in decibels (see Bode
diagram in Fig. 7 and Nyquist plot in Fig. 8) are positive,
the closed-loop system is definitely stable. Fig. 9 clearly
depicts the water bed effect of H2 system. It is also

Figure 8 Nyquist plot for H2 system
Figure 9 Sensitivity against complementary sensitivity function for H2 system
IET Control Theory Appl., 2008, Vol. 2, No. 7, pp. 583–594
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apparent that for Lo

�� �� ,, 1, Lo

�� �� ’ To

�� ��, meanwhile for
Lo

�� �� .. 1, Lo ’ 1= So
�� ��.

The resultingH2 autopilots should have the same number of
states as the transfer function of elevon-average-to-altitude.
However, there is a pair of common complex conjugate poles
and zeroes given by: 22.443 + 8.7835i that can cancel each
other. As a result, in terms of pole/zero/gain, the resulting
H1 compensator is obtained

K (s) ¼
�0:54884(s þ 0:463)(s þ 0:1166)

(s þ 28:53)(s2 þ 0:7145s þ 0:1386)
(14)

The resulting closed-loop eigen values, damping factor as
well as undamped natural frequency are given in Table 2.

5 Robust H11111 problem set up
As opposed to time domain LQG control, H1 is a
frequency-domain-based linear quadratic optimal control,
developed in response to address the issue related to the
modelling errors and uncertainty [18]. Interested readers
may refer to [12–14, 25] and also to [15, 16, 21–23] for
further studies. It is in fact a powerful frequency domain
optimisation technique to design robust control systems.
The name H1 refers to the space of stable and proper
transfer function, that is, the degree of the denominator is
always greater or equals to the degree of the numerator at
the same time strictly maintain all poles on the left-hand
side of s plane.

As previously defined, the1-norm of a transfer function is
simply the peak of the Bode magnitude diagram of a transfer
function and is defined as:

Gk k1¼ sup G( jv)
�� �� (15)

The objective here is to minimise the 1-norm of the transfer
function, which in turn, minimise the peak of the Bode
magnitude plot, in order to enhance robust stability margin
of the systems.

Table 2 H2 autopilot design result

Eigen values Damping Frequency

20.1314 1.000 0.131

20.123þ 0.103i 0.765 0.161

20.1232 0.103i 0.765 0.161

20.4581 1.000 0.458

20.4667 1.000 0.467

22.443þ 8.7835i 0.268 9.120

22.4432 8.7835i 0.268 9.120

228.5 1.000 28.5
Control Theory Appl., 2008, Vol. 2, No. 7, pp. 583–594
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Consider the two-port block diagram in Fig. 6, the
standard H1 problem is to work out an internally
stabilising controller, K(s) for the plant P (s), such that the
1-norm of the closed-loop transfer function, Tzw, is below
a give positive scalar level, g.

Mathematically, it can be formulated using the following
equations

min
K (s)stabilising

Tzw

		 		
1
, find

K (s)stabilising
Tzw

		 		
1
� g (16)

in which, g is a positive definite scalar. By employing the
search algorithm, g is iterated until the optimal value is
reached. Practically, this design approach is to make a
delicate balance act of trade-offs [25].

It should be pointed out that there is a common thread
between H1 and LQG autopilot since both of them
employ a state estimator and feed back the estimated states.
Ricatti equation is also applied to compute both controller
and estimator gains. The difference is however when it
comes to the coefficients of Ricatti equations and the fact
that some extra terms are introduced in H1 state estimator
[25].

5.1 H11111 Problem solutions

The theoretical development ofH1 synthesis mainly refers to
[25]. In the sense of LQG, optimal feedback regulator is
given as:

u ¼ �kcx̂ (17)

The state estimator is then given by

_̂x ¼ Ax̂þ B2uþ B1ŵþ Z1ke(y � ŷ) (18)

in which ŵ ¼ g�2B0
1X1x̂ and ŷ ¼ C2x̂þ g�2D21B

0
1X1x̂.

The robust compensator can be calculated using the
following equations

K (s) ¼
A � B2kc � Z1keC2 þ g�2

(B1B
0
1 � Z1keD21B

0
1)X1 Z1ke

�kc 0

2
4

3
5 (19)

where,

kc ¼
~D12(B

0
2X1 þD0

12C1)

~D12 ¼ (D0
12D12)

�1

ke ¼ (Y1C
0
2 þ B1D

0
12) ~D21

~D21 ¼ (D0
21D21)

�1
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and

Z1 ¼ (I � g�2Y1X1)
�1

Moreover, X1 and Y1 are the solutions of Ricatti equations
obtained as follows

X1 ¼ Ric
A � B2

~D12D
0
12C1 g�2B1B

0
1 � B2

~D12B
0
2

� ~C
0

1
~C1 �(A � B2

~D12D
0
12C1)

0

" #

(20)

Y1 ¼ Ric
A � B1D

0
21
~D21C2


 �0
g�2C 0

1C1 � C 0
2
~D21C2

� ~B1
~B
0

1 �(A � B1D
0
21
~D21C2)

" #

in which ~C1 ¼ (I �D12
~D12D

0
12)C1 and ~B1 ¼ B1 (I �

D0
21
~D21D21) Finally, the resulting closed-loop system is

depicted in the following extended state space equations:

_x
_̂x

� �
¼

A �B2kc

Z1keC2 A � B2kc þ g�2B1B
0
1X1

�Z1ke(C2 þ g�2D21B
0
1X1)

2
64

3
75

�
x

x̂

� �
þ

B1

Z1keD21

� �
w (21)

The output equation is then given as follows:

z
y

� �
¼

C1 �D12kc
C2 0

� �
x
x̂

� �
þ

0
D21

� �
w (22)

A stabilising compensator will exist if and if only

r(X1Y1) , g 2 (23)

where r(A) is the spectral radius of (A), r(A) ¼ lmax(A). In
fact, for every value of g, there are two Ricatti equations
that must be solved.

5.2 Robust H11111 autopilot – problem
formulations

First, the two-port input, which corresponds to actual
disturbances or to un-modelled dynamics of the systems are
introduced as

w ¼ [d1 d2 d3 d4 n]T (24)

in which d1 corresponds to input elevon average disturbance,
while d3 and d2 denote pitch and pitch rate disturbances,
respectively. Also, d4 is the altitude noise due to input
elevon average and n is the existing measurement noise in
flight.

The performance objective we would like to achieve here is
to synthesise a stabilising H1 autopilot that can achieve the
closed-loop performance objectives, for example, the
0
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desired (minimum) sensitivity function bellow 0 dB or
about one over a particular frequency range.

By incorporating the newly introduced terms in (24) into
state equation obtained in (13), we finally arrive at the
extended state space equation as follows

_x1 ¼ �5:4740x1 � 86:05x2 � 49:12x3 � 4:927x4

� 0:065x5 þ uþ d1 (25)

_x2 ¼ x1

_x3 ¼ x2

_x4 ¼ x3

_x5 ¼ x4 þ d3

in which x5 is altitude of the aircraft (m), x4 the pitch
output (degrees) and x3 to x1 are the first to third
derivative of pitch.

The measurement equation is given as

y ¼ �0:0117x1 � 0:2519x2 � 3:006x3 � 18:64x4

� 49:42x5 þ nþ d2 þ d4

where, n is noise in measurements.

The regulated outputs are altitude x5 and control signal u,
given as

z ¼
x5
u

� �
(26)

in which z is the regulated output. In this design, the
magnitude of control signal is to be bounded in the
regulated outputs to avoid saturation issues. This
requirement is also to satisfy the rank condition.

The resulting H1 autopilots should have the same number
of states as the transfer function of elevon-average-to-altitude
obtained in (7). However, since there is a pair of

Table 3 H1 autopilot design result

Eigen values Damping Frequency

20.131 1.000 0.131

20.224 1.000 0.224

20.439 1.000 0.439

20.458 1.000 0.458

22.44þ 8.78i 0.268 9.120

22.44 – 8.78i 0.268 9.120

228.5 1.000 28.50

283.6 1.000 83.60
IET Control Theory Appl., 2008, Vol. 2, No. 7, pp. 583–594
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common complex conjugate poles and zeroes given by
22.4446+ 8.7786i that can cancel each other, the
simplified model of H1 compensator is given by:

K (s) ¼
�398:51(s þ 0:4629)(s þ 0:1174)

(s þ 83:62)(s þ 28:49)(s þ 0:6387)
(27)

One pole added at s ¼ 283.62 and s ¼ 228.49 are to
improve high-frequency attenuation. The value of optimal
gamma g-opt ¼ 8.2611. Upon several iterations, the
resulting estimator gains L and regulators gains K are

Figure 10 Bode diagram of the compensated open-loop
transfer function of H1 system
Control Theory Appl., 2008, Vol. 2, No. 7, pp. 583–594
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obtained as follows:

L ¼ [0:0010 0:0001� 0:00001� 0:0012� 0:05769]T

(28)

K ¼ 7:0138 38:9153 606:3590 389:1771 56:8942½ �

The resulting closed-loop poles, damping factors and its
undamped natural frequency are displayed in Table 3 as
follows.

Figure 11 Nyquist plot of H1 system
Figure 12 Sensitivity against complementary sensitivity function for H1 system
591
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5.3 Frequency response

The resulting compensated open-loop frequency response is
given by Fig. 10. It indicates that the resulting GM ¼ Inf
and PM ¼ 82.41838, which is desirable from the point of
view of robustness. Moreover, it has the crossover frequency
of gain margin vcg ¼ 1 (rad/s), and the crossover
frequency of phase margin vcp ¼ 0:1548 (rad/s). Since the
Nyquist plot (Fig. 11) does not encircle 21þ j0, thus the
compensated system is definitely stable. The resulting
sensitivity against complementary sensitivity function for
our H1 system is plotted in Fig. 12.

5.4 Time domain performances

The feasibility of H1 frequency domain design is now
simulated in time domain. In this scenario, at t ¼ 0 s the
aircraft was commanded to climb up to 100 m.

Figure 13 Taking off, cruising and landing performances (SP
denotes its set point), Hinf system is represented by light
grey line and H2 system by dary grey line
2
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Subsequently, at t ¼ 25 s, the altitude setting point was
changed to be zero, see Fig. 13. As can be seen, H1

autopilot has successfully achieved better time domain
performance (quicker settling time) compared with H2

counterparts.

Subsequently, in Fig. 14, the effects of disturbances were
investigated. An altitude disturbance (30% from the
magnitude of setting point), at t ¼ 25 s, was injected to
the closed-loop control systems to examine how good the
closed-loop control systems in overcoming the existing
disturbances. It is apparent from Fig. 13 that the disturbance
can be overcome with minimum or no overshoots, within
reasonable settling time which is desirable from the designer
point of view. In aviation world, overshoots are in fact the
undesirable transient responses which have to be suppressed.
Failure to accomplish this task may create some damages to

Figure 14 Closed-loop control systems performances due to
30% disturbances at t ¼ 25 s (top), control signal (bottom)

Hinf system is represented by light grey line, whereas H2 system is
represented by dark grey line
Figure 15 Maximum tolerable amount of uncertainty, D ¼ 1/jT ( jv)j, for H2 and H1 autopilots
IET Control Theory Appl., 2008, Vol. 2, No. 7, pp. 583–594
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the whole systems, particularly when the pilot would like to
land the aircraft. The oscillations during take off or landing
have to be eliminated completely.

6 Maximum tolerable amount of
uncertainty D( jv)
At any given frequency, say for instance, v1, the maximum
amount of uncertainty, D, that can be tolerated while still
maintain the stability of the closed loop control system is
the reciprocal of the amplitude of the complementary
sensitivity function, j1=jTo( jv)jj, as depicted in Fig. 15.
Accordingly, in our design, H2 autopilot has successfully
outperformed H1 autopilot in terms of stability robustness
due to smaller magnitude of the closed-loop transfer achieved.

7 Concluding remarks
Theoretical developments of robust autopilots usingH1 andH2

algorithm have been developed. Our design results indicate the
superiority of robust H1 autopilot in terms of domain
performances compared with H2 counterpart due to smaller
magnitude of the nominal sensitivity function achieved. H1

autopilot in fact provides more responsive time domain
response as depicted in Fig. 13. Moreover, robust H1

autopilot also poses better stability margin (GM ¼ infinity
and PM ¼ 82.41838) compared with its H2 counterpart
(GM ¼ 21.1356 dB, PM ¼ 76.37428).

Nevertheless, superior time domain performance can be
achieved by having smaller magnitude of the nominal
sensitivity function, So

�� �� at a particular frequency.
Accordingly, due to water bed effects, it must be paid by
having bigger magnitude of the nominal complementary
sensitivity function To

�� ��. As a result, H2 autopilot has been
superior when it comes to stability robustness compared
with its H1 counterpart. It turns out that although it is
believed that there is no robustness guarantee for H2

autopilot, it does not necessarily mean that the design result
must be lacking or poor of robustness.

We cannot in fact keep both So
�� �� and To

�� �� small at the
same instance. Instead, we can arrange one of them
smaller, over one range of frequency, and over the
complementary range of frequency another is retained to be
smaller. Since the demand of good performance over the
design frequency range and the demand of good robustness
above this range, in practice, sensitivity is smaller over the
design bandwidth 0, v b

� �
and the complementary

sensitivity is smaller over the remaining bandwidth,
v b, 1
� �

. At higher frequencies the inaccuracy in modelling
is most likely to occur.
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