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Mini-Workshop on Data Directed Computation
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11.00 Coffee
12.30 Introduction to the Workshop-;

| (Brian Randeli and Bob Hopgood}
13.45 Lunch
14.30 LLL presentation {(Geocrge Michael)
15.15 LLL presentation (Chris Hendrickson)
16.00 Manchester presenfation (John_Gurd)‘
16.30 .Tea

o .

17.15 Newcastle presentation (Phil Treleaven).
09.45 ' Westfield presentation {Peter Osmen)
10.30 Manchester presentation {Greg Egan)
11.00 Ceffee

11.45 Clarkson presentation (Susan Conry)

12.30 Discussion range of applicability of data
d&fecﬁed computation.

13.45 Lunch

14.30 Warwick presentation (Bill Wadge)

15.15 Discussionaprngrammabi}ity - will users
demand FORTRAN

16.00 Discussion:perfprmance issues

16.30  Tee :

17.15 General {(final} discussion;
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TIMETABLE
Monday
10.30 - 11.00 Coffee
11.45 - 12.30 Introduction to the Workshop

(Brian Randell and Bob Hopgood)
12.30 = 13.45 Lunch
13.45 -~ 14.30 LLL presentation (George Michael)
14.30 - 15,15 LLL presentation {(Chris Héudrickson)
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16.00 - 16,30 Tea
16.30 -~ 17.15 §ewcastle presentation‘(Phil Treleaven).
Inesday - _
09.00 - 09.45 Westfield presentation {Peter Osmen)
09.45 - 10.30 Manchester presentation (Greg Egan) .
10.30 - 11.00 Coffee |
11.00 - 11.45 Clarkson presemtation (Susan Conry)

11.45 - 12.30 Discussion mrange of app;icability‘of data
dgrected computation.. | | :

12.30 -~ 13.45 Lunch

13.45 - 14.30 Warvwick presenﬁﬁtion {(Bill Wadge)

14.30 - 15.15 Discussionaprogrammability - will users
demand FORTRAN

15.1% ~ 16.00 Discussions performance issues

16.00 -~ 16,30 Tea

16.30 - 17.15 General (final) discussion.,




Lucid and its datuflow seimantics

W Widpge

Warwick
‘

Lucid is a vaguely ilgol-like nenprocedural languape based on equations, Its
unusual feature is that it allows programmers to write natural looking programs
which can be understood operationnlly as uging iteration - thus disproving the
widely neld belief that iteration is incompatible with the nonprocedural (or ap-

plicative) approach to propramming.,

The semantics of & Lucid yprogram is piven mathematically, not operationally,
80 it cannot be sa2id to be a dataflow languuge {because dataflow is an operational

concept). ‘Lhere is, however, « very simple wiay of translating a bucid program

into & data flow net; but she net does not necessarily compubte the output pre-
dicted by the mothemutical semantics, The problem is that the net may deadlock,
possibly in the course of computing unnecessary values, Fortunately there is a

simple test (the c¢ycle sum test) which rules out deadlock for =a large class of

"sensible" programs.

The lack of coincidence betwesan the muthematical and Lhe dataflow. semantics oo

of Lucid can be interpreted in two ways: ns evidence that the purely mathematical
approach is in some respects unrenlistic; or as evidence that dataflow is in: some

respects inadequate. We argue for the latter.

G RGO RizPow T 2/



WORKSHOP ON DATA DIRECTED COMPUTATION

L]

This workshop, organised by the Compubing Laboratory of the
University of Newcastle upbn Tyne, is sponsored by the Distributed
Computing Systems project of the S8.R.C. Computing Science Committee.
It brings together representatives of severul groups involved in the
b.C.8. programme, and of other proups, all of whom are interested in
one particular area of Distributed Computing Systems.

This is the area that we have, perhaps migleadingly termed
'Data-Directed Computation' ~ a term we have borrowed from our Livermore
Laboratery collieagues. In fact the various groups represented here are
tackling what in some cases are quite different problems, and have u
range of quite different motivations underlying their work. These range
from concentration on ultra-high performance computers for number
crunching tasks, to interest in the provision of programs which can
be formally validated. In some cases therefore the stress is on CPU
architecture and design, in others on programming languages.

However there is a crucial common thread - namely the wish to
break away from the conventional, largely sequential, form of prugrams,
and of program execution, in favour of a form which facilitates the
use of parallelism, Efrferabiy on & large scale.

Conventional programs, even on’ computers which are capable of ... ...
parallel activity, are implicitly sequenlial, and require any desired
paralielism to be indicated explicitiy. I+ seems to me that the ceniral
theme of this workshop is a belief in the potential value of the
opposite approach, i.e. of programs which are to be regarded as
implicitly parallel, and where sequentiality has to be indicated
explicitly. One motivation for the belief is the view that programs
which are, so to speak, unnecessarily sequential, are an obfuscation
of the programmer's real intention - another is that programs which
have implicit parallelism and explicit sequentialism are a more
appropriate method of controlling the sort of hardware with high
replication factors that current technology makes feasible, and so
of providing the means of a massive increase in processing speed. My
own interest is not so much meotivated by a concern for the speed of
purticular types of numericpl computalion, but rabther by being intrigued
about the possibility (and I can as yet put it no higher than that) of
finding an entirely new approach to general purpose computing.

We are gradually realising that there are, not surprisingly, a
number of different forms of implicitly parallel, explicitly sequential
programming languages (both textual and graphical) and a variety of
computer architectures that could be used to execute such programs.

One language/architecture pairing, 4o date the most extensively studied,
is that of the single-assignment language and the data flow computer
architecture. This approach can be characterised by the abandonment

of the notion of a variable, and hence of that of explicit storage.
However. other approaches retain these concepts.

I expect that this workshop will enable us all to obtain a better
understanding of these various approaches, and to learn what each group
is trying ‘o achieve and has achieved, and will provide a major stimulus
for friendly co-operation and competition between the groups. It may
even enable us to reach some agreement on the definitions of the various
terms we use to describe our work.

B. RANDELL

12th June 1978
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Abhstract

Initial simulation studies have shown that the data-driven model
of computation 1is suitable for expressing solutions to simple
stimulus-response problems. Simulation becomes difficul% for more
realistic problems, and rarely produces convincing results. ¥We are
therefore developing a flexible hardware/software system to allow a

more detailed study.



Introduction

We unow from [Adams] that the data-driven computation model e¢an
represent any computable function. In theory, this means that all
programs can be put in a "data-driven computation" (or data~flow for
brevity) form; this is true even if the program has no obviocus
inputs. It follows from this that the model may be used as the basis
of a general=-purpose computing system, and this is the starting
point of other data-flow project-groups (e.g. [Gurd], [Arvind],
[Dennis]). We would agree with this premise, but feel that the
control-systems application area with its high intrinsic parallelism

should show the data-flow system at its best.

Not all control-systems applications are suited for
implementation on a data-~flow system. For example, a plant that has
to perform a fixed sequence of operations may best be controlled by
a conventional computer. The applications that we think are suitable
are those in which the contreolling system has to respond to external
stimuli. A simple example is a plant that has to be maintained at a

specific temperature .

In the following sections, we shall discuss the suitability of
data-flow systems for handling stimulus-response systems, and
describe an experimental system that we can use to study this
problem. We will assume that the reader is familiar with the
data=-driven-computation model; the graph primitives are similar to

those proposed by Gurd et al. [Gurd].



Stimplus-~response Svsbems: Is date~filow suitable?

Characteristics of 3Stimulus-response Systems

We give here the characteristics of a2 stimulus-response system

that are relevant to the discussion in the next section.

First, the controller has no direct control over either the time,
or rate at which stimuli arrive. The controller must be able to cope

with bursts of stimuli,

Second, the controliler must respond in = ceritain time if it is to
maintain control. This Yeritical period" depends on the application

and may vary between micro-seconds and hours,

Third, the responses must be in the same order as the stimuli

that caused them, i,e. the controller must be determinate.

Last, we expect the (controlling) computer system to be a small
part of the system being controlled. The control system must work on
its own once it has been set up. We do not rule out the use of other
computers in setting up the system (cross-compiling the reguired
programs , for example). In some applications the computer system
may be physically embedded in the system being controlled (e.g. in
contrelling a robot); in these cases the controller must be small

and light.

Because we are short of time, we shall not discuss learning (or



adaptive) control systems although we do not ruie them out.

Suitability

We became interested in stimulus-~response systems because of the
strong resemblance to data-flow computation. In both cases, a
function of the data is evaluated; this evaluation is triggered by
the arrival of the data. HNo special programming (e.g. interrupt
handling in a conventional system) is reguired to deal with uneven
data-arrival rates; data that cannot be dealt with immediately 1is
gueued., Moreover, the data-driven computation model is determinate

[Adams].

Finding the response time of systems where queueing is not
maintained (e.g. [Gurdl) is difficult because pieces of data may
"ayertake? one another inside the system. We cannot, therefore, gilve
an upper bound for the time a particular piece of data exists in the
system., If we dimplement a Pstrictly queued® system (where no
"overtaking® is allowed), then we can bound the time taken to
evaluate the response function for a particular stimulus. if we also
know {or can assume) a probability distribution for data arrival,
then, wusing gueueing theory, we can calculate the expected response

time.

Anocther advantage of data-driven systems is the natural way in
which unusual 1/0 devices, and specialised processors (e.g. array
processcrs) may be interfaced. All we need to do is define them as

new primitive functions or procedures and direct data appropriately.
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Finally, the data-fiow system can make use of inherent
parallelism in the control program. There are two forms of

exploitable parallelism:

13} Given one stimulus the program may have more then one
executable node at any given time. We call this static

parallelism.

2) Given more than one stimulus further gains may be made

through a "pipe~line" effect in the program,

We call the overall parallelism dynamic parallelism,

We concluded that stimulus-response systems were a fruitful area
for study, and we then chose & specific control appliecation ,
hand-eye systems, fo examine in detail. A hand-eye system can be
studied on a small scale and, moreover, is of research interest in

its own right. We shall now describe it in more detail.



Hand~eve Systems

Background

Industrial manipuliators or robots have been in use for some time
on production lines in Germany, Japan, and the United States though
they are rare in this country. Although manipulator technology is
quite advanced, the control systems and sensory devices are not. OUne
of the more common manipulators 1z the Unimate [Shoszan]; it is
"blind™ and has a fixed 200 step memory. However, the cost of
transfer and indexing equipment may be ten times the cost of the

manipulators themselves{Ritzan].

The most useful sense for finding and identifying randomly placed
objects is sight. Optical sensors, or feyes", in the past have
usually been based on video cameras; these devices are passive in
nature, and require the storage of large amounts of picture data. In
addition, excassive computation is needed to extract depth
information. Currently, one of the more interesting Yeyes"™ is the
laser tracker. The device is quite s=imple and initial research,
carried out in Japan ilshii], seems promising. A laser beam is
deflected sc that a spot in the field of interest is iliuminated. An
image scanner gives the position of the spot in the plane normal to
the laser axis. It is then a simplie matter, given the geometry of
the system, to compute ihe cartesian co-ordinates of the spot
relative to some reference frame. By suitable deflections of the
beam, the size and snape of objects in the field of view may be

determined. The laser tracker allows the control system to actively



interrogate its environment, whilst reducing the computational and

storage overheads mentioned above.

Hand-eye systems {the combinatlion of a manipulator and optiecal
sensor) exhibit a high degree of parallelism. Parallelism exists in
the ocontrol of the physical device (for example, control of the
varicus motors in the manipulator) and the identification of objects
by forming a number of hypotheses. The overall contrel ifask may be
gasily partitioned into quite simple sub-tasks well matched to the
capabilities of current microprocessors. In the camse of the Japanese
team, the cholce was to use two mini-computers, one for the tracker,

and one for the manipulator.

Laser Tracker Control

We started by looking at this part of the problem. Figure 1 shows
the tracker geometry. Computation of the laser spot co-ordinates is
simple. The only c¢omplication is that the laser deflectlion angle
must not be changed until the scanner generates its output {(a simple

feedback loop which gates new inputs solves the problem).

Eithough the tracker program (figure 2) did not seem to be highly
parailiel, simulation showed that the best possible speed-up is about
11 (B0 processor modules); of this, 3.7% is due toc static
parailelism, and this spesd-up iz increased by a factor of 3 because

of the pipe-line effect.



Limitations of Simulation

Initial simulation results are encouraging and a more det

study is indicated. However extending the study by simulation

to problems:

1)

2}

It is difficult to simulate, even at a simple level, a
real environment with which the laser tracker can
interact. Simulating a realistic visual environment for

the lasmer tracker may prove impossible.

The cost of the simulation (in time and space) will be

prohibitive with realistic programs.

We, therefore, decided to build an experimental system to

in more detail the problem of nmulti-processor control o

hand-eye systems. We describe this system in the next section.

alled

leads

study

f the
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The Experimental System

General

As the time availasble to us is limited, we are concentrating on
the processing section of the facility. If time permits, we will
build the "eye" section. The multi-processor is being Implemented
using both software on MU5 (MU5 is described in [Ibbett]) and actual
hardware {(figure 4). This approach has been chosen for the following

reasonsg:

1) Full simulastion of the processor and environment would
have been excessively time consuming and not very

gonvineing.

2) Emulaticen of the processor alone by MUS is difficult in

terms of interfacing real-time devices.

3) Construction of a complete system is expensive in time and

money; answers to all the problems are not yet known.
Conseguently we chose a mixture of hardware and software

emulation. This will give us the following advantages:

1}  Software can be debugged in parallel with  machine

construction.
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2) Access to MUS peripherals and software facilities.

3) Ease of interfacing with real-time devices,

Figure 4 shows the proposed system architecture. Four hardware
modules are being bullt and will be interfaced with the MUS system.
Programs on MUS will simulate another 12 modules (this number can
be easily changed). Other support software will be made available on
MUS5 =~ an emulator for the processor chip on which we chose to base
the hardware modules (the ZILOG Z804), an assembler for the Z80A,
and a high-level-language compiler for the data-flow system. &
high~ievel simulator already exists for the hardware and this was

used for initial evaluation.

Architecture of the Data-flow System

A block diagram of the data-flow system is given in figure 5.
Basically, the system goes through the same processing cycle as  the
system propogsed by Gurd et al [Gurd], and we will not describe it

here. The main differences between their system and ours are :

1) ine result gueuss in our system are true FIF0 queues. This

removes the need for iterztion levels, and also allows us

to estimate response times {as described earlier).

2} A processor module consists of an execution unit, a node
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store and a result gueue; datz tokens do not enter a
result queus unless they are destined for a node defined

in the zssociated node store.

33 The details of the procedure calling mechanism are

different .

4)  Primitives are provided for manipulating streams [Wengl.
This is a general mechanism for simulating most

data-structures and for sequencing input and output.

53 Storage nodes are not provided. Y"Memory" is provided by

the stream mechanism.

6) The data~tokens are typed; this provides for runtine
checking and it aiso allows us to have varisble-szsized

tokens.

Hardware

The hardware, while not opftimal for data-flow, has a high degrae
of flexibility. This is essential as there is very 1ittie we are

certain of,

Processor modules execute data-flow programs interpretively. To

alliow this the multiprocessor is configured as shown in figure 5.
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Inter-module communication can only take place via the exchange and
the destination modulets result queue. Modules may communicate
directly only with peripherals and store connected to their own bus.
The use of an exchange is somewhat arbitrary, but it is simple to
implement and can be replaced by other structures at a later date.
The exchange has slots for 8 modules with an initial complement of
4. The modules are based on the ZILOG Z80A & bit microprocessor

chip. The broad characteristics of the modules are as follows:

1) 1.0uBec. instruction time.

2) BK X 8 pit bytes of dynamic RAM.

3) 2K X 8§ bit bytes of EROM (expandable to bUK bytes),

4) 2 % 8 bit parallel 1/0 ports (expandable to 256 ports).

5) RS~232C serial interface.

The RS-232C interface of one module will be linked to the PDP-11

multiplexer for communications with MU5,

The language

We have designed {(and are currently implementing a translator
for) a high-level language called NEWSPEAK., The language is based on
LiSP [McCarthy]l because of its suitability for  expressing

parallelism, its eatablished use as a programeing language and its
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use as a formal mathematical notation. The functional form is
well-gsuited to data-{low use and list structures are easily
implemented using the siream mechanism. Some features of the

language are :

1) the types of variables may be specified,

2) new data types and operations on them may be specified

using the Class mechanism,

3) noe side effects are permitted,

) no iterations are allowed,

and 5) conditional expressions and function arguments may be

evaluated in paralliel.

We can best show the language in the space available by giving an
example of its use. Figure & shows the NEWSPEAK version of the laser
- tracker controller. For brevity, we assume that “readscanner® is
available as a primitive function. Auxiliary definitions are
introduced to make the program more readable. "Define® binds a
function name to an expression; the type specifications should be
self-explanatory. YBrackets" forms its arguments inte a stream (=2
function may only return one argument}. When the arguments for this
function are avallable, the function can be evaluated; these
argunents are obtained by evaluating the auxiliary functiocons X, Y,

and Z, and they in turn nesd the results of other function
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evaluations.

Figure T shows hand-compiled code from the program of figure 56;
the compiler should produce similar code, In this example, type
checking can be done at compile-time, and no extra code is needed.
If a name occurs more than once, the appropriate numbsr of "dup

instructions is generatsed.

We hope that this brief description gives the flavour of the

language.

Current status

We are currently implementing the experimental system descaribed

above,

An application area has been described for which data-driven
architectures seem well-suited. & particular problem in this area
was studied in detail and we presented some simulation results for
this preoblem. Finally, we described an experimental system that

would allow us to study the preblem in greater detail.
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{ define [{
[laser : [real; real; real] -> stream (real; real; real);

1)

2)

37

4)

fea)
N’

73

AL [ Fy £1;
{constant [[ {D; some valuel:[L;some valuel 11;
define
L
[outscan : stream (real; real) ;
readscanner [&; F; &

5
[X4D : real ; head [ outsecan 1 1:
[Z8D 1 real ; tail [ outsean 1 1

[X @ real ; [L¥tan[8]+D®XAD/(Fétan[61+XaAD)1];
[Y : real ; [D¥F-{L*Y{AD)/(F%tanioi+XaD}11;
H

[2 : real [X # 74D / 2AD713

11

bracket { X; Y; Z]

Notes

"Readscanner” is assumed te be a primitive function,

¥Tan" is a system function;

Functionsg may only return one result;

"Eracket®” forms its arguments into a stream;

"Define"” binds a name to an expression:

"Constant' binds a name to a value; the values of D
are fixed for a particular laser tracker;

Erithmetic expresions are evaluated from left to
precedence may be foreed using brackets;

A BEWSPEAK function that confrels the laser tracker

Figure §

and L

right;
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Handw-compiled Code for the Program of Figure 6

Figure ¥
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