2nd International OMNeT++ Workshop. January 2002, Berlin, Germany

A Simulation Suite for Accurate Modeling of IPv6
Protocols

Johnny Laif Ericwu! Andras Vargai Y. Ahmet $ekerciog“;lluT Gregory K. EganT

f Centre for Telecommunication and Information Engineering, Monash University, Melbourne, Australia

YDepartment of Telecommunications, Technical University of Budapest, Hungary

Abstract

As part of our ongoing research program on performance analysis of protocols for mobility man-
agement in IPv6 networks, we have developed a set of OMNeT++ models for accurate simulation of
IPv6 protocols. Our simulation set models the functionality of the RFC 2373 IP Version 6 Addressing
Architecture [5], REC 2460 Internet Protocol, Version 6 (IPv6) Specification [3], RFC 2461 Neighbor Discov-
ery for IP Version 6 (IPv6) [7], REC 2462 IPv6 Stateless Address Autoconfiguration [10], RFC 2463 Internet
Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification [2], and RFC
2472 IP Version 6 over PPP [4].

1 Introduction

Inevitably, telecommunication networks are increasingly becoming more complex as the trend to-
wards the integration of telephony and data networks into integrated services networks gains mo-
mentum. It is expected that these integrated services networks will include wireless and mobile envi-
ronments as well as wired ones. As a consequence of the rapid development and fusion of commu-
nication technologies, understanding the dynamic interaction of protocols and performance analysis
are becoming much more complex to be investigated in small-scale experimental testbeds. Analyti-
cal analysis is also not feasible for similar reasons. Simulation is now considered as a tool of equal
importance (as complementary to the analytical and experimental studies) for investigating and un-
derstanding the behavior of complex systems.

As part of our ongoing research programs on analysis of protocol performance on mobile IPv6
networks, we have developed a set of OMNeT++ models for accurate simulation of IPv6 protocols.
We have chosen OMNeT++ as the simulation framework because of the following reasons: (a) It allows
the design of modular simulation models, which can be combined and reused flexibly; (b) It is possible
to compose models with any granular hierarchy; (¢) OMNeT++ is open-source, free for non-profit use,
and has a fairly large and active user community; (d) It has support for parallel simulation; and (e) Its
performance is comparable to commercial simulation tools. Section 2 presents a brief summary of the
features of OMNeT++.

Our IPv6 simulation model suite consists of several functional blocks. There is also dual-stack sup-
port for analysis of protocol interactions in mixed IPv4-IPv6 networking environments. The accuracy
of the simulation is ensured because of the fine-grained level of details in the simulation. Realistically
formatted protocol data units (PDUs) are passed between simulated network entities and service data
units (SDUs) exchanged between the adjacent protocol layers. The IPv6 datagram format currently
includes most of the extension headers except the ones related to Authentication and Encapsulating
Security Payload. Real data from our network testbed is used to calibrate the model, and simulated
processing delays are introduced where necessary to account for the differences without sacrificing
performance. The structural breakdown of the model and module descriptions can be found in Sec-
tion 3.

2nd International OMNeT++ Workshop. January 2002, Berlin, Germany

Currently we are working on mobility support, and future enhancements in the pipeline include
profiling the model for very large scale network simulations (i.e. 10,000+ network entities) and dy-
namic creation of network topologies through XML (extensible markup language) based configuration
files.

2 OMNeT++ Simulation Framework

OMNeT++ is a C++-based discrete event simulation package developed at the Technical University
of Budapest by Andrés Varga [8, 12]. The primary application area of OMNeT++ is the simulation of
computer networks and other distributed systems. It is open-source, free for non-profit use, and has a
fairly large and active user community. It also allows the design of modular simulation models, which
can be combined and reused flexibly. Additionally, OMNeT++ allows the composition of models with
any granular hierarchy. It has been shown that this simulation framework is suitable for simulation of
complex systems like Internet nodes and dynamics of TCP/IP protocols realistically [6, 14].

Simulated models are composed of hierarchically nested modules. In OMNeT++, there are two
types of modules: simple and compound modules. Simple modules form the lowest hierarchy level
and implement the activity of a module, and they can arbitrarily be combined to form compound mod-
ules. Modules communicate with message passing. Messages can be sent either through connections
that span between modules, or directly to their destination modules. The user defines the structure of
the model (the modules and their interconnection) by using the topology description language (NED)
of OMNeT++ [11].

Simple modules are implemented in C++, using the simulation kernel system calls and the simula-
tion class library. For each simple module, it is possible to choose between process-style and protocol-
style (state machine) modeling. Therefore, different parts of computing and communication systems
can be programmed in their natural way and connected easily. The simulation class library provides a
well-defined application programmer’s interface (API) to the most common simulation tasks, includ-
ing: random number generation; queues, arrays and other containers; messages; topology exploration
and routing; module creation and destruction; dynamic topologies; statistics; density estimation (in-
cluding histograms, P2 and k-split [13]); output data recording. The object-oriented approach allows
the flexible extension of the base classes provided in the simulation kernel.

Model components are compiled and linked with the simulation library, and one of the user inter-
face libraries to form an executable program. One user interface library is optimized for command-
line and batch-oriented execution, while the other employs a graphical user interface (GUI) that can
be used to trace and debug the simulation (as an example, Figure 1 shows a simulated network con-
figuration). The GUI makes the internals of a simulation model fully visible: it displays the network
graphics, animates the message flow and lets the user peek into objects (messages, queues, etc.) within
the model. It is also possible to change parameters and message fields for debugging purposes. Visu-
alization features make OMNeT++ suitable also for educational or demonstration purposes. Because
of the modular design, it is possible to embed the simulation engine (including models) into other
applications. OMNeT++ also has support for parallel discrete event simulations (PDES).

3 IPv6 Simulation Model

The IPv6 simulation model suite consists of several functional blocks. As one can expect, the major
blocks reside in the network and data link control layers. These blocks can be connected together to
form simulated hosts, routers, Ethernet hubs, point-to-point links etc. Figure 2 shows these blocks in
a model of a router with three network interfaces. The core module (IPProcessing) of the network
layer (Figure) provides dual-stack support (IPv4 and IPv6).

Our simulation model provides enhancements to the existing OMNeT++ IPv4 models mainly in
the areas of providing interchangeable network interfaces for simulating IP protocols using various
physical transport mechanisms (point-to-point links, Ethernet connections etc.). The enhancements
also include the ability to model nodes having any combination of these physical devices.

2nd International OMNeT++ Workshop. January 2002, Berlin, Germany

[HOMMNeT++/Tkenv — testiletwork B
Eile Edit Simulate Trace [nspect ¥iew Options Help
2 b 2 BB Nt D

Run #1: testetwark |[Event#15500 [T= 2591 (43m 115) | Mext #576 testietworkhigpor|
Msgs in FES: 121 [[Tatal msgs: 22699 [Live msgs: 10448

2 H (cCompoundModule) testietwork
- 2 .2 B B| €

testhletwork

Ew/sec: nia Simsecisec: hfa Ew/simsec: nfa

I K (cCompoundiodule) testhetwork.ecse Hil Johniy_PC
PAPR. topipinterf _ -
o Evert, Wiz, || -4 2| E F| 0| B B| #|

App. topipinterf

1

#% Event #3300,
PRApP, topipinterfd| |testhletworkec:

#% Event #3301,

P topipinterface

#% Event #3302,

P topipinterface
#% Event #3303,

tus
Etic_|
= o
p.topipinterface router(0)
/

=== BCse
hub higpond QQ
Ahmet_PC
[R-H (cCompo 7 |

ool g2 4 ' z '

1estNetwurk.b|gpInd

2 8 & L m =
..... i
rauter[werw host[e] e ST 51| host[a)

e

= I -

Figure 1: OMNeT++ screen showing a hierarchical network model. The upper right window shows the topology
of a simulated network consisting of four subnets. Topologies of the two of these subnets, ecse and bigpond are
shown in the middle and bottom windows respectively.

A router in an IPv6 network has many configurable parameters. We believe that the user should
not have to learn the custom syntax of a configuration file in order to change a single parameter. From
auser’s point of view any approach that can reduce the learning curve involving a new simulation tool
will be very useful. For this reason, we have chosen Extensible Markup Language (XML) as the format
for the configuration file of the network nodes. The reasons behind our decision can be summarized
as follows: XML is easy to comprehend, non-proprietary and mature technology with many tools
available (parsers, viewers and validators etc.).

3.1 IPv6 Node Hierarchy

The architectural framework of the IPv6 simulation model is based on the structure of the OMNeT++
IPv4 Protocol Suite [14]. The IPv4 suite consists of modules that model the data link control, network
and transport (TCP and UDP) layers. Our IPv6 simulation model framework is interoperable with
the IPv4 models to support modeling dual stack routers which allow IPv4 and IPv6 packet flows
simultaneously. The suite also allows various data link control layer network interfaces to be present
within a single node. Therefore, it is possible to investigate the interactions between IPv4 and IPv6
protocols in a mixed protocol environment. We believe that the introduction and integration of IPv6
into the current global IPv4 infrastructure will raise performance issues that need to be investigated
in large scale simulated networking scenarios.

3.1.1 Network Layer

We have adopted a different approach than the design of the IPv4 Protocol Suite [14], and separated
the network interface from the network layer. This approach has allowed us to add new models of
physical interfaces and to simulate routers that can have a combination of various network cards. In
our simulation suite, the network layer contains only the IP processing, IP input queue and the IPv4
routing table modules (Figure)- The main functional blocks of the IP processing module are as

2nd International OMNeT++ Workshop. January 2002, Berlin, Germany

testMetwark.ecse.router[0]

4+ testhetwork Eric_PC.netML ayer
o
L+l

processorhanager

0 o
input®ueue routing Takhl
linkL spersOjnkl sgers[nklL s ers[2]

(a) Top level modules. (b) Structure of the Network Layer module.

=4

Figure 2: The simulation model of a router with three network interfaces.

follows (see Figure 3): The IP discriminator (ipd) module checks the IP version and forwards the
packets to the correct IP stack. The IP combine (ipc) receives the packet from either the IPv4 or IPv6
stack and forwards the packet to the data link control layer.

testietwork. Eric_PC.netwvorkLayer.proc

Figure 3: The main functional blocks of the IP processing module (which is part of the network layer shown in
Figure). See text for details.

3.1.2 Data Link Control Layer

The Data link control layer module shown in Figure 4 contains the input queue and an interchangeable
network interface. This arrangement allows one to accommodate different physical transports without
aneed of recompilation of simulation models. At the time of writing, PPP and Ethernet interfaces have
been implemented. The Ethernet model also includes a hub which is derived from the work of Baresi

1].

3.2 Processing IPv6 Datagrams

The core functionality of the IPv6 Simulation model is implemented in the IPv6 processing compound
module (ipv6 block in proc which is part of the network layer). See the Figures , 3 and 5. This mod-
ule determines the destination of packets, initiates and receives ICMP notifications, and implements
Neighbour Discovery mechanisms.

2nd International OMNeT++ Workshop. January 2002, Berlin, Germany

testretwork Eric_PC linklLayers(0]

¥

i)
::yxﬁut@ueue
- -

netwarkthterface

Figure 4: Structure of the simulation model for generic data link control layer modules.

Referring to Figure 5, the compound module IPv6Processing consists of the following submod-
ules: PreRouting6 (preRouting), IPv6LocalDeliver (LocalDeliver), Routing6 (routing), IPv6Multicast
(multicast), AddressResolution (addrResln), ICMPuv6 (ICMP), IPv6Send (send), IPv6Output (output), IPv6Fragmentation
(fragmentation) and RoutingTuable 6 (RoutingTables).

IPvBEProcessing T ¢ l
L) *

/ragmentatinn

m—— —

addrResin ':'UtF'Ut[ﬂUlHOfF'Dr‘ts]

(T2
L1

multicast

routingTables

Figure 5: Internal structure of the compound module IPv6Processing.

Datagrams arriving a node will encounter the PreRouting6 module first. In this module, a hook can
be implemented to gather statistics or filter packets as described in [14]. Next hop determination is
the responsibility of the Routing6 module. Its options are:

e Send the datagram to an output interface via the fragmentation module when forwarding of
packets is in effect i.e., it is a router,

e Send the datagram to multicast module when the packet has a multicast destination address,
e Send the datagram to localDeliver module for local delivery of the datagram.

LocalDeliver accepts datagrams destined for the local node, decapsulates the datagram and delivers
its contents to upper layers. Any destination options encountered in the datagram are also processed
here.

The AddressResolution module queries neigbhours for their data link control layer address and re-
sponds to the same requests issued by neighbouring nodes. It aims to follow the prescribed procedures
defined in RFC 2461 [7] as closely as possible.

2nd International OMNeT++ Workshop. January 2002, Berlin, Germany

Determination of the next hop neighbour is accomplished in Routing6 as mentioned previously
with the aid of the simple module RoutingTable6, which contains the conceptual data structures men-
tioned in Section 5.2 of RFC 2461 [7]. Many other simple modules rely on RoutingTable6 to provide
access to those structures, notably NeighbourDiscovery, Multicast and AddressResolution.

IPv6Send encapsulates the upper layer SDUs into IPv6 datagrams and sends them to Routing6 for
further processing.

The IPv6Fragmentation module accepts outgoing datagrams from Routing6 and checks to see if
fragmentation is required before transferring the packets to IPv60utput module.

ICMP packets are managed by the ICMPv6 compound module. The internal structure of this mod-
ule is shown in Figure 6. It contains three simple modules ICMPv6Core, NeighbourDiscovery (nd) and
ICMPCombine (combine). The ICMPv6Core module implements most of the RFC 2463 [2].

ICMF‘uET

L
icmpvECare

t:nmfine

Figure 6: Components of the ICMP compound module.

The NeighbourDiscovery simple module initiates and responds to neighbour discovery messages
according to the role of the node (host or router) in conformance with RFC 2461 [7]. AutoConfiguration
has also been added in accordance with RFC 2462 [10].

The accuracy of the simulation is ensured due to the fine-grained level of detail in the simulation.
Datagrams are passed between network entities and SDUs exchanged between the adjacent protocol
layers. The IPv6 datagram currently implements most of the extension headers mentioned in [3] ex-
cept the Authentication and Encapsulating Security Payload headers. Real data from simple network
testbed is used to calibrate the model. Simulated processing delays are introduced where necessary to
account for the differences without sacrificing performance.

3.3 Node Configuration and Parameter Specification Files

The network configuration (i.e. the connections between the network entities) is described through
OMNeT++’s NED language. In addition to this, for each IPv6 node, a set of parameters can be con-
figured by writing an XML document. (A sample XML document is shown in Figure 7). There are
two ways to configure parameters of a node. In the <global> section, a parameter for all interfaces of
all nodes on the same network is set, and in the <local> section, a particular parameter on a specific
interface of the node is set.

2nd International OMNeT++ Workshop. January 2002, Berlin, Germany

4 Concluding Remarks and Future Work

Future enhancements in the pipeline include adding support for mobility; profiling the model for
very large scale network simulations (i.e. 10,000+ network entities) and dynamic creation of network
topologies through XML configuration file.

5 Acknowledgment

This work is supported through a Victorian Partnership for Advanced Computing (VPAC) expertise
grant.

References

[1] M. Baresi. EtherDemo — a simple ethernet (802.3) simulation. URL reference: http://whale.hit.ome.
hu/cgi-bin/contrib.pl?dir=models&txt=EtherDemo-1.0.

[2] A.Conta and S. Deering. RFC 2463 Internet Control Message Protocol ICMPv6) for the Internet
Protocol Version 6 (IPv6) Specification, 1998. URL reference: http://www.fags.org/rfcs/rfc2463.html.

[3] S. Deering and R. Hinden. RFC 2460 Internet Protocol, Version 6 (IPv6), 1998. URL reference:
http://lwww.fags.org/rfcs/rfc2460.html.

[4] D.Hasken and E. Allen. REC 2472 IP Version 6 over PPP, 1998. URL reference: http://www.fags.org/
rfcs/rfc2472.html.

[5] R. Hinden and S. Deering. RFC 2373 IP Version 6 Addressing Architecture, 1998. URL reference:
http://lwww.fags.org/rfcs/rfc2373.html.

[6] U. Kaage, V. Kahmann, and F. Jondral. An OMNeT++ TCP model. In Proceedings of the European
Simulation Multiconference (ESM’2001) [9].

[7] T. Narten, E. Nordmark, and W. Simpson. RFC 2461 Neigbhour Discovery for IP Version 6 (IPv6),
1998. URL reference: http://www.fags.org/rfcs/rfc2461.html.

[8] OMNeT++ object-oriented discrete event simulation system. URL reference: http://www.hit.bme.hu/
phd/vargaa/omnetpp.htm, 1996.

[9] The Society for Modeling and Simulation International (SCS). Proceedings of the European Simula-
tion Multiconference (ESM’2001), Prague, Czech Republic, June 2001.

[10] S. Thomson and T. Narten. RFC 2462 IPv6 Stateless Address Autoconfiguration, 1998. URL
reference: http://www.fags.org/rfcs/rfc2462.html.

[11] A. Varga. OMNeT++ User Manual. Department of Telecommunications, Technical University of
Budapest, 1997. URL reference: ftp://ftp.hit.ome.hu/sys/anonftp/omnetpp/doc/usman.pdf.

[12] A. Varga. The OMNeT++ discrete event simulation system. In Proceedings of the European Simula-
tion Multiconference (ESM’2001) [9].

[13] A. Varga and B. Fakhamzadeh. The K-Split algorithm for the PDF approximation of multi-

dimensional empirical distributions without storing observations. In Proceedings of the 9th Ey-
ropean Simulation Symposium (ESS’97), pages 94-98, Passau, Germany, October 1997. The Society
for Modeling and Simulation International (SCS).

[14] K. Wehrle, J. Reber, and V. Kahmann. A simulation suite for internet nodes with the ability
to integrate arbitrary quality of service behavior. In Proceedings of the Communication Networks
and Distributed Systems Modeling and Simulation Conference (CNDS’2001), Phoenix, Arizona, USA,
January 2001.

http://whale.hit.bme.hu/cgi-bin/contrib.pl?dir=models&txt=EtherDemo-1.0
http://whale.hit.bme.hu/cgi-bin/contrib.pl?dir=models&txt=EtherDemo-1.0
http://www.faqs.org/rfcs/rfc2463.html
http://www.faqs.org/rfcs/rfc2460.html
http://www.faqs.org/rfcs/rfc2472.html
http://www.faqs.org/rfcs/rfc2472.html
http://www.faqs.org/rfcs/rfc2373.html
http://www.faqs.org/rfcs/rfc2461.html
http://www.hit.bme.hu/phd/vargaa/omnetpp.htm
http://www.hit.bme.hu/phd/vargaa/omnetpp.htm
http://www.faqs.org/rfcs/rfc2462.html
ftp://ftp.hit.bme.hu/sys/anonftp/omnetpp/doc/usman.pdf

2nd International OMNeT++ Workshop. January 2002, Berlin, Germany

O VW NOUE WN -

NN DNDN PR s e e e
WIN—R, OWOWONNUGTE WN -

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE netconf SYSTEM "netconf.dtd">

<netconf>

<global>
<gAdvSendAdvertisements>on</gAdvSendAdvertisements>
<gMaxRtrAdvInterval>1700</gMaxRtrAdvInterval>
<gMinRtrAdvInterval>500</gMinRtrAdvInterval>
<gAdvManagedFlag>on</gAdvManagedFlag>
<gAdvOtherConfigFlag>on</gAdvOtherConfigFlag>
<gAdvLinkMTU>5644</gAdvLinkMTU>
<gAdvReachableTime>33567</gAdvReachableTime>
<gAdvRetransTimer>5346</gAdvRetransTimer>
<gAdvCurHopLimit>457457</gAdvCurHopLimit>
<gAdvDefaultLifetime>8000</gAdvDefaultLifetime>
<gHostLinkMTU>1400</gHostLinkMTU>
<gHostCurHopLimit>2</gHostCurHopLimit>
<gHostBaseReachableTime>232</gHostBaseReachableTime>
<gHostRetransTimer>234</gHostRetransTimer>
<gHostDupAddrDetectTransmits>1</gHostDupAddrDetectTransmits>

</global>

<local node="hostl">
<interface>

R o B R R R R R W0 W0 W00 W W W W WRNDNNNDNDN
OO NONUTE WNPFPOOVOXNONUERE WNRFEOWYW®ON O O

Figure 7: An example of a configuration file used for specifying the values of several parameters of the nodes in
an IPv6 network.

<inet_addr scope="global">435:345:4:0:260:97ff:0:1/64</inet_addr>

</interface>
</local>
<local node="router">
<interface>

<inet_addr scope="1ink">fe80:0:0:0:260:97ff:0:5/64</inet_addr>
<AdvSendAdvertisements>off</AdvSendAdvertisements>
<MaxRtrAdvInterval>1231</MaxRtrAdvInterval>
<MinRtrAdvInterval>344</MinRtrAdvInterval>
<AdvManagedFlag>off</AdvManagedFlag>
<AdvOtherConfigFlag>off</AdvOtherConfigFlag>
<AdvLinkMTU>250</AdvLinkMTU>
<AdvReachableTime>1888</AdvReachableTime>
<AdvRetransTimer>222</AdvRetransTimer>
<AdvCurHopLimit>10</AdvCurHopLimit>
<AdvDefaultLifetime>6710</AdvDefaultLifetime>
<AdvPrefixList>
<AdvPrefix>3018:FFFF:0:0:0:0:0:0/48</AdvPrefix>
</AdvPrefixList>
<HostLinkMTU>60</HostLinkMTU>
<HostCurHopLimit>5</HostCurHopLimit>
<HostBaseReachableTime>500</HostBaseReachableTime>
<HostRetransTimer>400</HostRetransTimer>

</interface>
</local>
</netconf>

	Introduction
	OMNeT++ Simulation Framework
	IPv6 Simulation Model
	IPv6 Node Hierarchy
	Network Layer
	Data Link Control Layer

	Processing IPv6 Datagrams
	Node Configuration and Parameter Specification Files

	Concluding Remarks and Future Work
	Acknowledgment

