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Abstract

In this paper we present a centralised flight-by-wire system based on µ-synthesis approach to the 
longitudinal flight motion of our experimental flying wing unmanned aerial vehicle (UAV), P15035 
series. The challenge associated with our UAV is related to the fact that all motions of our UAV are 
controlled by two independently-actuated-ailerons namely elevons, together with its throttle. The 
scope of this research, nonetheless, falls within the area of elevon control based on the trimmed linear 
longitudinal flight modes obtained experimentally while throttle was set constant. The reason for 
considering µ-synthesis autopilot is to minimise the effects of uncertainty in modelling by maximising 
the amount of tolerable uncertainty within our system’s bandwidth as we aim to minimise the structure 
singular value µ of the corresponding robust performance associated with the uncertain systems. 
Second, it also provides flexibility in tunning due to the absence of partitioning model of MIMO system. 
Hence the entire autopilot was designed by keeping the system model as a whole. We also perform a 
comparative study with respect to well-known H∞ mixed sensitivity autopilot. Our study indicates that 
the µ synthesis autopilot designed possesses better performances both in time and frequency domain as 
indicated by reasonably quick settling time in the absence of overshoot while still maintaining better 
robust stability margin. 

Index Terms: Robust µ-synthesis Autopilot, Uncertainty, Flying-Wing UAV
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I. Introduction

A
utonomous flying robots, which is also colloquially 
known as Unmanned Aerial Vehicles (UAVs) 
or “drones” have been widely developed for 
purposeful civilian and military applications such 
as aerial surveillance, inspection in complex and 
inhospitable environments, agriculture, mapping 
and analysis, animal tracking, border protection, 
wildlife habitat monitoring, missions in hostile 
environments, volcano observations etc [1-5].  One 
major challenge on the designs of UAVs is due to 
development of robust autopilot systems that can 
provide autonomous guidance from taking-off, 
cruising to landing in the face of uncertainty and 
modelling errors.  The reason is because there is no 
perfect mathematical model for any systems in the 
world, even for the very basic and simplest one. 

As such, every mathematical model, regardless its 
complexity is subject to modelling error. For this 
reason, therefore, we must be aware of the issue of 
modelling error and its propagation with respect to 
the performance of the overall closed-loop control 
systems. 

Furthermore, given the fact that the identified 
models will be used to design the real-time control 
systems, improper handling of uncertainty shall 
adversely affect the robustness of the closed loop 
control systems. In worst case, the proposed systems 
may not work practically due to lack of robustness. 

Accordingly, robust control systems have been 
widely developed [6-16]. To name a few, while 
Balas et al. discussed the  application of µ-synthesis 
techniques to momentum management and attitude 
control of the space station [6] and the same author 
in [7] also developed robust control of flexible 
modes in the controller crossover region, Doyle et 
al. in [8] formulated state-space solutions to standard 
H2 and H∞ control problems. Furthermore, while a 
case study of space shuttle lateral axis flight control 
system during re-entry was thoroughly discussed 
in [11], linear-multivariable robust control with a µ 
perspective was proposed in [10] by Packard et al..
 

Considering autonomous flight control systems, 
the ultimate design that the UAV engineers wish to 
achieve is to provide autonomous guidance from 
taking-off, cruising to landing.  In order to achieve 
this goal, feedback control systems must satisfy 
both robust stability and robust performance for a 
particular dynamic system. 

Accordingly, our motivations to conduct this 
research are threefold and they can be elaborated 
as follows. First, the reason to employ µ-synthesis 
robust autopilot is to design a robust compensator 
in frequency domain in a way that we can maximise 
the robust stability margin of the closed-loop control 
system with respect to modelling error within the 
operational bandwidth of the system. 

To address this question, we employ a centralised 
robust autopilot that is easy to tune by means of un-
partitioning system’s model while considering the 
dynamics of sensor noise, external disturbance (e.g. 
wind gust) and error in modelling. Second, we also 
aim to achieve a responsive time domain closed-loop 
response with minimum overshoot. This is critical 
since the presence of overshoot is undesirable, a 
waste of energy and it can cause serious damage on 
the aircraft, particularly when the aircraft is about to 
land. 

Hence, our main goal is to minimise the structure 
singular value µ of the corresponding robust 
performance associated with the uncertain system. 
We believe that this method is more powerful and 
easier to be computed and implemented compared 
to conventional robust control approaches (e.g. H∞ 
or H2 counterparts). Subsequently, we also perform 
a comparative study to compare the performance 
of our µ-synthesis autopilot with respect to H∞ 
counterpart.

In more detail, we consider designing µ-synthesis 
autopilot via D-K iteration. The D-K iteration 
procedure is an approximation to µ-synthesis control 
design. The availability of µ-synthesis toolbox in 
MatLab® has simplified the composition process. 
The offline computation algorithms also have made 
the composition process more computationally 
intensive rather than the real time control loops 
computed in flight, where we have electrical and 
computational power limitations. 
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Our research aircraft P15035 (see Fig. 1) belongs to 
the class of aircraft called flying wings and is known 
colloquially as a ‘plank’ having an unswept constant 
chord (width) wing of low aspect (length-to-width) 
ratio and no rudder or elevator in the sense of a more 
conventional aircraft.  

We chose a plank since it is very rugged, of compact 
construction and has, at least for human pilots, 
very benign flight behaviour and wide airspeed 
range; autopilot design and tuning is a little more 
challenging compared to conventional aircraft.

Meanwhile, our technical reason for considering a 
flying wing aircraft is due to its unique advantage 
compared to conventional aircraft that normally has 
three control surfaces. The benefit is due to reduced 
parasitic drag in the absence of an extended tail and 
associated elevator and rudder control surfaces. 
Subsequently, this leads to the second motivation of 
this research to substantiate the mathematical model 
of the longitudinal dynamic behaviours of a typical 
flying wing UAV.

This type of aircraft is well-known and has been 
widely developed, especially for purposeful military 
applications such as in “stealth technology” which 
is a low-observable-type aircraft designed to 
avoid radar detection using various state-of-the-
art counter-detection technologies that reduce the 
reflection of radar, infra-red, visible light as well as 
RF spectrum. Hence, the aircraft can camouflage 
and remains undetected by various electromagnetic 
spectrums. 

Some examples of typical real flying wing type 
aircraft in military domain are due to B2-srategic 
bomber, Northrop YB-49 as well as Lockheed 
Martin RQ-170 Sentinel UAV employed by United 
States Air Force. Hence, this study can also serve as 
comparative investigation of the dynamic behaviors 
of typical flying wing aircraft and its possible 
extension or modification such as bi-directional 
flying wing developed by NASA for supersonic 
travel. 

Technically, our P15035 has two elevon control 
surfaces which combine the functions of elevators 
and ailerons in which its technical specification are 
illustrated on Table 1. While pitch is controlled by 

the average deflection of the elevons, roll is by the 
difference. Furthermore, while the aircraft has a 
vertical stabiliser, it has no attached rudder and so 
yaw control is indirect through roll. 

The aircraft does not have the usually long moment 
arm provided by elevators, it must rely upon a 
trailing edge reflex in the rear of the airfoil to 
maintain a positive pitching moment to overcome 
the moments introduced by a forward centre of 
gravity this being essential to maintain stability.  
Partially as a consequence of this, there is an 
increased coupling between throttle and pitch. We 
have assumed constant cruise throttle setting in this 
paper.

TABLE I:  SPECIFICATIONS OF AIRCRAFT P15035
Span 150 cm Motor Electric

Chord 35 cm Duration 40-60 minutes
Length 106 cm Speed 33 to 150 Kph
Control 
Surface Elevon Battery 28×GP3300NiMh

Weight 2.9-4.6 kg Autopilot MP2028

In addition, for the purpose of performing 
experimental-based modelling, we have at our 
disposal a large repository of flight logs for our 
aircraft. It contains the complete dynamics record of 
flight data.

To further complicate matters, we fly at relatively 
at low Reynolds number (<250K) regimes, which 
means turbulent flow and laminar separation 
occurs across wing surface. Air turbulence is also 
of concern due to the size of the aircraft; see [17] 
for more comprehensive explanations. As a result, 
the aircraft dynamics are non-linear and at times 
varying. Interested readers are suggested to refer to 
[17-19]. More comprehensive information regarding 
this small UAV controls will be given in Section II.
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Fig. 1 The P15035 Aircraft (Reproduced with the 
permission of J. Bird, a then member of the then Monash 
Aerobotics® Research Group)

Given the non-linear inherit behaviours of aircraft 
dynamics, it is worth considering to employ non-
linear modeling and autopilots e.g. while Melin in 
[20] considered Neuro-Fuzzy fractal approach for 
adaptive-based control of an aircraft, Ye in [21] 
investigated equational dynamic modelling and 
adaptive control for a UAV. Moreover,   Escareño 
in [22] studied non-linear modelling and control of 
a convertible VTOL aircraft in hover mode, Rimal 
et al. in [23] conducted simulation of non-linear 
identification and control of a UAV by means of 
artificial network. Furthermore, George et al. in [24] 
developed a Simulink model for an Aircraft landing 
system using energy functions.  

In this work, however, we develop linear robust 
autopilot via µ-synthesis due to its simplicity, 
practicality as well as robustness as earlier studied in 
[25] and [26]. Our preliminary work on optimal and 
robust autopilot can be found in [27-29]. Relevant 
control theory related to system identification can be 
found in [30-35]. 

The organisation of this paper is as follows. 
Firstly, Section I depicts the motivations and the 
organisation of this research. In Section II, the open 
loop mathematical model of elevon-average-to-
altitude is introduced together with the study of its 
time domain characteristics. Next, Section III deals 
with robustness issues. Subsequently, in section IV 
robust autopilot via µ-synthesis has been introduced 
together with the study of both their frequency 
domain as well as time domain performances.  
Lastly, conclusions will be drawn in Section V.

II. Open Loop Elevon-Average-to-Altitude 
Mathematical Model

Longitudinal and lateral models for conventional 
larger aircraft are well understood; see [26-28].  
It is assumed that the longitudinal dynamics is 
to be uncoupled from its lateral motions. Pitch 
is controlled by the average deflection of the 
elevons, meanwhile, roll is controlled by the elevon 
deflections in an attempt to control yaw and to 
minimise the adverse drag. 

The longitudinal directional models for the 
P15035 were obtained using system identification 
techniques. Consider the trimmed model in which 
the throttle is constant, two controllable inputs of 
the model are right elevon, left elevon and three 

outputs are given by output state vector 
, representing the rates of pitch, roll and yaw vectors, 
respectively.  Hence, the linear trimmed model of 
our flying wing UAV can be depicted as follows 
[17]:
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where rl δδ , represent left and right elevon 

respectively (degree) and ijG are  the corresponding 
transfer functions. 

Due to the symmetrical properties of the aircraft 
about its x-z plane, consequently, the effects of  
left and right elevons are identical to the pitch but 
opposite to the roll and yaw, therefore we have 

that 1211 GG = , 2221 GG −= , 3231 GG −= . By 

denoting 11GGP = , 21GGR =  and 31GGY = , it 
eventually leads to the following equation [12], [13]:
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where, respectively, Aδ and Dδ are associated with 
elevon average and elevon difference, given by 

rlA δδδ +=   (or 2/)( rlA δδδ +=  , if 

pG becomes 2 pG ) and   rlD δδδ −=
. From 

equation (2), pitch is independently controlled by 

elevon average deflection Aδ , corresponding to the 
elevators of a conventional aircraft; and roll and 

yaw are both driven by elevon difference Dδ , 
corresponding to the aileron and rudder for a 
conventional aircraft. Consequently, no decoupling 
can be made between yaw and roll due to special 
configuration of the aircraft.
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The control schemes generally on our UAV have 
a classic inner and outer loop configuration.  
The selection of 5Hz was determined by the 
manufacturers of the autopilot since we use 
Micropilot MP2028. 

2.1 Pitch Rate-to-Pitch Modelling
The input-output experimental data of pitch-rate-to-
pitch is represented in Fig 2.

Fig. 2 Flight Logs of Pitch-Rate-to-Pitch Transfer 
Function

Accordingly, the relation of pitch-rate-to-pitch can 
be obtained as follows:

.

The model can be validated as seen in Fig. 3 as 
follows:

Fig. 3 Measured (black line) and Simulated (blue line) 
Pitch (in degree)

Since the difference between the measured data and 
simulated model is negligible, it can be argued that 
the acquired model is valid.
 
By cascading the relation of elevon-average-to-
pitch-rate as well as pitch-rate-to-pitch, under 
trimmed flight conditions with a constant engine 
throttle and airspeed, the P15035’s longitudinal 

discrete time transfer function from the elevon 

average deflection aδ  in degree to the pitch 

angle pθ (°) with a sampling frequency of 5 Hz is 

)3763.02267.0)(9785.0)(9115.0(
)0091.0(13065.0
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in which its complex conjugate poles are given 
by: iz 6029.01134.0 ±−= . 

Converted (3) to s domain model, using zero order 
hold on the inputs it becomes:                            (4)
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,  with a pair of complex conjugate pole given by: 
is 7835.84435.2 ±−= . 

It is well known; e.g. see [19], [20] that the typical 
longitudinal dynamics of a conventional aircraft 
(elevator to pitch) with a constant engine throttle 
can be mathematically expressed as follows:           

( )( )
)2)(2(

/1/1
)(
)(

2222
21

sssppp ssss
TsTsk

s
s

ωωςωωςδ
θ θθθ

++++

++
=

. (5)
  

In (5) δ is now the elevator angle (instead of the 

elevon average in (4)); θk is the high frequency gain; 
22 2 pppp sss ωως ++=∆  is the so-called phugoid mode, 

and 
22 2 ssss sss ωως ++=∆
is the short period mode; pς

and sς
are the damping factors and pω  and sω

are 
the undamped natural frequency of the two modes, 
respectively. 

Typically, the phugoid mode is overdamped with a 
relatively large time constant and the short period 
mode represents underdamped oscillations. The 
overall pitch step response is a combination of a 
slow exponential function and quickly decaying high 
frequency oscillations. 

Also, comparing (4) with (5), it can be apparently 
seen that the longitudinal model (4) has pitch 
characteristics which are not exactly the same as 
those of conventional aircraft. Consequently, when 
the roots are real, the term phugoid can no longer be 
properly used. 
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In this regards, its phugoid model is replaced 
by pitch subsidence roots and is given by: 

)1087.0)(4633.0( ++=∆ sss p .                       

This is overdamped with a dominant large time 
constant of s10=τ . Its short period model is given 
by: 

12.83887.42 ++=∆ sss s .                        (5)

Here, the damping ratio is about 0.268 and the 
natural frequency 9.12 rad/s. The settling time is 
small being in the order of 1s. The impulse response 
for both modes is plotted in Fig. 4.  Normally, the 
roots of the phugoid mode are complex conjugate. 

In more detail, a comparative computer simulation 
of impulse pitch amplitude response for short term 
and subsidence mode can be seen in Fig. 4. It is 
apparent that the short period mode response dies 
much quicker, in the order of 25 times faster than the 
impulse response from subsidence mode. 

Fig. 4 Impulse pitch amplitude responses (deg) for 
phugoid and short period modes of UAV P15035

Fig 4 also turns out that the final dc values of both 
pitch and altitude with respect to a unit step input are 
negative constants with different nominal values i.e. 
-k and  -c, where ck ≠ , as expected in real flight. 

2.2 Pitch-to-Altitude Modelling
Pitch-to-altitude transfer function can be modelled 
using a block diagram given in Figure 5. 

Fig. 5 Relation of Pitch-and-Throttle-to-Altitude 

Pitch and throttle are in fact two major inputs to 
altitude control, hence, this system can be modelled 
using two transfer functions, i.e.,  
represents the dynamics of pitch-to-altitude and  

 depicts the dynamics of throttle-to-
altitude. 

However, since it is assumed that the engine 
should produce a constant throttle, the influence 
of  can be neglected. Hence, for 
modelling, the first 950 data points were examined, 
whilst data number 951-1800 were used for 
validation. Again, this also happens under an 
assumption that the aircraft experienced small or 
negligible perturbation during its period of flight. 

Fig. 6 Pitch-to-Altitude Experimental Data

As can be seen in Fig. 6, the input variable is the 
pitch angle in degrees. It was perturbed in small 
angles around 18/π− to 18/π in order to achieve its 
desired altitude. Also, it should be pointed out that 
the open loop data was obtained during real-time 
flight test using an experienced human pilot mode 
to really achieve reasonably accurate experimental 
data.

The resulting discrete transfer function of pitch-to-
altitude is obtained as:
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Furthermore, by cascading the relation of elevon-
average-to-pitch; i.e. with pitch-rate-to-pitch as well 
as pitch-to-altitude, hence, the resulting transfer 
function of the overall longitudinal motion is 
obtained as:                         (7)                                  

)3763.02267.0)(9969.0)(9785.0)(9115.0(
)0091.0(007128.0
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From (7) the linearised model of the longitudinal 
dynamics can be expressed in continuous state space 
equations given by:

                DuCxy
BuAxx

+=
+=

,   (8)

in which, Au δ= , hy = and 
x

is the state vectors 
of the systems depicting altitude, pitch, pitch rate  as 
well as second and third derivatives of pitch while A 
and B denote systems’ matrices and C as well as D 
indicate outputs of the system.
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where 5x is altitude of the aircraft (m), 4x is  pitch 

output (deg) and 3x  to 1x  are the first to third 
derivative of pitch.
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Fig. 7 Root locus of the open loop altitude dynamics of 
our flying-wing airframe
Meanwhile, Fig 7 depicts the root locus of the 
open loop transfer function of elevon average-
to-altitude. It is apparent that there are two poles 
located near the origin that can cause instability 
for the overall open loop system. Fig 7 also clearly 
illustrates the coordinate position of the position of 
subsidence dominant poles with respect to short-
term counterparts.

III. Uncertainty and Robustness 
This section explicates the framework of our robust 
flight control system to the longitudinal flight 
motion of the Unmanned Aerial Vehicles, P15035. 
While we mainly focus on design based on µ-
synthesis approach, we will also briefly compare the 
performance of our µ-synthesis closed-loop system 
with respect to H∞ counterpart. 

3.1 General Problem Formulations of Robust 
Autopilot 

We bring our system into its equivalent MIMO 
model formulation.  The plant in Fig. 9 can be 
represented in the following extended state space 
diagram as follows:

uBwBAxx 21 ++=* ,
uDwDxCz 12111 ++= , (9)

uDwDxCy 22212 ++= ,

where z is the regulated outputs, that is, the signal 
we are interested in controlling (in this research: 
altitude and its control signal), meanwhile, y
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is signals that are measured and fed back to the 
controller. Also, w , u , x correspond to the existing 
disturbances,  input elevon average, and states of the 
system, respectively. 

The model of the system and the existing 
disturbance can be represented in the collapse block 
diagram shown in Fig. 8. 

Fig. 8 Robust Stability Represented in Collapse Block 
Diagram

For stability analysis, the command reference signal 

is not required; hence it is set to be zero. Let )( ωj∆
be the maximum uncertainty that can be tolerated 
by the closed loop control system while still 

maintaining its stability, and )1/()( ooo LLjT +=ω  be 

the complementary sensitivity function in which oL  
is the open loop gain. 

According to the small gain theorem, the stability 
of closed loop system can be guaranteed if 

1)()( <∆
∞

ωω jTj o . In other words, it can also be 
mathematically rewritten as: 

)(
1)(

ω
ω

jT
j

o

<∆
, 

ω∀

.           (11)

3.2 The Framework of our µ-synthesis Robust 
Autopilot
The control objective we would like to achieve is to 
synthesise a stabilizing µ-synthesis autopilot that can 
achieve the closed-loop performance objectives e.g. 
the desired (minimum) sensitivity function below 0 
db over a particular frequency range.

The block diagram of our µ-synthesis robust 
autopilot can be depicted in Fig 9. 

Fig. 9 µ-synthesis robust autopilot for altitude dynamics 
of a flying wing aircraft ,  .

To properly design our µ-synthesis robust-autopilot, 
we proceed as follows (as illustrated in Fig 9). 
First, the plant is modelled in the form of nominal 
model P(s) and the multiplicative uncertainty model 

.  denotes the complex structured of 
uncertainty dynamics and the weighting function 

shall determine the uncertainty as a function of 
frequency. 
This model will be implemented to accommodate 
the error as an uncertainty model with respect to the 
input. We choose ∆ in the form of a stable first-order 
transfer function. 

Second, we define reference model which 
represents the desired model for the closed loop 

control system. We also define and which 
indicate the frequency characteristics of the external 
disturbance and the frequency domain noise in 
the feedback signals. This model will be derived 
based on the wind disturbance as depicted in [21]. 

Subsequently, we define  as the weighting 
function of the performance of the closed loop 
system with respect to our ideal response, while 

 is to shape the penalty control signal due to the 
limitation of the actuator at high frequency [20].

Given the framework of our control system in Fig. 
10, the input vector of the weighted closed-loop 
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control systems is given by:  while 

the output vector can be denoted by
. Given the transfer function as the 
closed-loop MIMO system, we can rewrite it as 

.

Considering Fig. 10, we aim to work out the 

stabilizing autopilot  such that for all 

perturbations, the closed loop system  is stable, 

that is, to achieve . In other words, 
the goal of µ-synthesis is to work out the stabilizing 

controller  so that can be 
satisfied. 

This can be performed by minimising the singular 

value  of the closed loop transfer function, 

where is defined as hypothetical uncertainty 
block with respect to robust performance and 

 denotes the augmented block structure 

mathematically defined as: . In addition, 
while P(s) denotes open loop model of the system 
K(s) indicates the robust compensator designed. 

The µ-synthesis algorithm works by adopting the 

generalized scaled plant model given by 
equation (10).  The D-K iteration procedure is an 
approximation to µ-synthesis control design. It 
involves a sequence of minimisations, first over 
the controller variable K (holding the D variable 
associated with the scaled µ upper bound fixed), and 
then over the D variable (holding the controller K 
variable fixed). Interested readers may refer to [1] as 
well as [6, 7].

Fig. 10 µ-synthesis problem formulation in two port block 
diagram 

The µ calculation (from the previous step) provides 

frequency-dependent scaling matrices . The 
fitting procedure fits these scaling with rational, 
stable transfer function matrices. 

The rational is absorbed into the open-loop 
interconnection for the next controller synthesis. 
Using either the previous frequency-dependent D's 
or the just-fit rational, an estimate of an appropriate 
value for the H-norm is made. This is a conservative 
value of the scaled closed-loop H norm, using the 
most recent controller and either a frequency sweep 
(using the frequency-dependent Ds) or a state-space 
calculation (with the rational D's). 

IV. Design of µ-synthesis Robust Autopilot

To model the dynamic of the plant, we will be using 
extended state space equation as a direct conversion 
from the transfer function discussed in Section II. 
We can rewrite the open loop model as follows:           

  15065.04927.4312.49205.8614740.51 duxxxxxx ++−−−−−=*
,               

  12 xx =* ,                                                          (13)  

   23 xx =* ,
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   34 xx =* ,

   345 dxx +=* ,

Furthermore, the measurement equation is given by:

,
where n is the existing noise in measurements. 

The regulated outputs are altitude 5x  and control 
signal u , given as:









=

u
x

z 5

,                                  (14)

in which z is the regulated output. In this design, the 
magnitude of control signal is to be bounded in the 
regulated outputs to avoid saturation issues. This 
requirement is also to satisfy the rank condition. 

We will define the uncertain nature of our 
mathematical model as follows. At low frequency, 
below 2 rad/s, it can vary up to 25% from its 
nominal value. Around 2 rad/s the percentage 
variation starts to increase and reaches 400% 
at approximately 32 rad/s. The percentage 
model uncertainty is represented by the weight 

 which corresponds to the frequency 
variation of the model uncertainty and the uncertain 
LTI dynamic object. 

Furthermore, a weighted sensitivity minimization 

problem selects a weight , which 
corresponds to the inverse of the desired sensitivity 
function of the closed-loop system as a function 
of frequency. Hence the product of the sensitivity 

weight and actual closed-loop sensitivity function 
is less than 1 across all frequencies. The sensitivity 

weight  has a gain of 100 at low frequency, 
begins to decrease at 0.006 rad/s, and reaches a 
minimum magnitude of 0.25 after 2.4 rad/s.

Subsequently, we employ second order model to 
represent the desired transfer function for the closed-
loop control systems to achieve critically damped 

response: . 

In addition, we employ the model given in [21] 
to represent strong wing disturbance given by the 
following first order system:  

. 

Meanwhile for process and measurement noise, we 
consider the following first order model: 

. 

Furthermore, we also weigh the performance of the 
closed-loop system compared to the ideal response. 
We follow the recommendation in [21], that suggests 

is flat at low frequency then rolls off at first order 
and flattens out at a small non-zero value at high-
frequency, that is, 

. 

Likewise, we also use the same model to shape the 
penalty of the control signal usage to limit input 
magnitudes at high frequency.

The resulting closed-loop eigen-values, damping 
factor as well as undamped natural frequency are 
given in Table 2.

Table 2 The resulting closed-loop pole’s positions for µ-
synthesis autopilot
             

                Eigenvalue Damping Freq. (rad/s)
-6.00e-003 1.00e+000 6.00e-003

-5.84e-003+1.65e-003i 9.62e-001 6.07e-003
-5.84e-003 - 1.65e-003i 9.62e-001 6.07e-003

-1.55e-002 1.00e+000 1.55e-002
-1.55e-002 1.00e+000 1.55e-002
-1.55e-002 1.00e+000 1.55e-002
-1.58e-002 1.00e+000 1.58e-002
-1.09e-001 1.00e+000 1.09e-001
-1.09e-001 1.00e+000 1.09e-001
-1.09e-001 1.00e+000 1.09e-001
-1.09e-001 1.00e+000 1.09e-001
-2.72e+000 1.00e+000 2.72e+000
-4.90e+000 1.00e+000 4.90e+000

-5.93e+000+ 2.63e+000i 9.14e-001 6.49e+000
-5.93e+000- 2.63e+000i 9.14e-001 6.49e+000
-4.84e+000+ 8.73e+000i 4.85e-001 9.98e+000
-4.84e+000- 8.73e+000i 4.85e-001 9.98e+000

-3.93e+003 1.00e+000 3.93e+003
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The resulting µ-synthesis autopilots is given in the 
following equation:                                           (15)

Design of µ-synthesis autopilot has been 
successfully performed via D-K iteration. The 
D-K iteration procedure is an approximation to 
µ-synthesis control design. The objective of µ-
synthesis is to minimise the structure singular value 
µ of the corresponding robust performance problem 
associated with the uncertain system . 

The uncertain system  is given by the open-
loop interconnection containing known components 
including the nominal plant model, uncertain 
parameters (µ-complex) and unmodeled LTI 
dynamics and performance and uncertainty 
weighting functions.

IV.1 H∞ mixed-sensitivity loop shaping 
Furthermore, as a benchmark performance, we 
will compare the performance of our µ-synthesis 
autopilot with respect to well-known H∞ mixed-
sensitivity autopilots as given in Fig 11 as follows. 

Fig. 11 The Framework of our H∞ mixed-sensitivity 
autopilot

We define  to weigh the error signal 
of our closed loop control system, while we weigh 

our actuator signal by a constant and the 
output signal is by a unity factor.

The resulting H∞ compensator is given as follows:

.

Accordingly, the corresponding eigen values of the 
closed loop control systems are given in Table 2.

Table 2 The resulting closed-loop pole’s positions for H∞ 
autopilot

Eigen-values Damping Frequency (rad/s)

-3.36e+000 1.00e+000 3.36e+000
-2.37e+000+ 2.67e+000i 6.64e-001 3.57e+000
-2.37e+000 - 2.67e+000i 6.64e-001 3.57e+000
-2.47e+000+ 8.79e+000i 2.71e-001 9.13e+000
-2.47e+000 - 8.79e+000i 2.71e-001 9.13e+000

-5.64e+003 1.00e+000 5.64e+003

                         
4.1 Frequency Response

Classical stability margin can be represented using 
two parameters i.e. gain margin (GM) and phase 
margin (PM).  Gain margin is defined as the factor 
by which the gain can be increased before the 
system is unstable. It also becomes the standard 
measure of the system’s relative stability. The 
gain margin of a stable system has to be positive. 
This is also desirable from the point of view of 
robustness. Another parameter associated with 
relative stability is called phase margin, which 
indicates the additional phase lag that will make the 
system marginally stable.

The resulting Bode diagram and Nyquist plot of the 
compensated open loop transfer function is given by 
Fig. 12 and Fig 13 respectively. 
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Bode Diagram
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Nominal Plant G(s)
Perturbed G(s) Real Plant
Closed loop µ-Synthesis Autopilot
Closed loop H∞ Autopilot

Fig. 12 Comparative Frequency Responses

The frequency response of the open loop system is 
given by solid black line while its perturbed modes 
is indicated by purple diamond line. The error in 
modelling is more noticeable at higher frequency, 
particularly for any  greater than 10 rad/s as seen 
in Fig. 12. 

The closed loop control systems (both µ-synthesis 
and H∞ autopilot) have successfully stabilised and 
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improved the performance of the system by 
satisfying the small gain theory so that 

 can be satisfied for all frequency 
range. Furthermore, they also have significantly 
increased the bandwidth of the closed loop system 
with respect to open loop counterparts by a factor of 
two. In other words, the closed loop control systems 
have satisfied small gain theorem 

1)()( <∆
∞

ωω jTj o  leading to good stability 
margin and improved bandwidth by a factor of two.

Likewise, according to Nyquist plot in Fig. 13a, it 
is apparent that while the Nyquist plot of the open 

loop system encircles , which indicates an 
unstable system, the Nyquist plot of the closed loop 
control systems, by no means, encircles the critical 
point -1+j0 since they have already satisfied the 

small gain theorem .
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indicating 

Fig. 13 Comparative Nyquist Plots for Uncompensated 
and Compensated Systems

The resulting sensitivity vs. complementary 
sensitivity function for our µ-synthesis system 
is plotted in Fig. 14.  It clearly depicts the water 
bed effect of our µ-synthesis system. It is also 

apparent that for 1<<oL , oo TL ≈ , meanwhile 

for 1>>oL , oo SL /1≈ . Thus, we can expect our 
system to possess low sensitivity at low frequency 
and low transfer function at higher-frequency. In 
other words, this turns out that at low frequency our 
system is expected to achieve better performance, 
while at high frequency it is anticipated to 
accommodate better robust stability margin. 
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Fig. 14 Sensitivity vs. Complementary Sensitivity 
Function 

4.2 Time Domain Performances
The feasibility of our µ-synthesis autopilot is now 
investigated in time domain as given by Fig. 15. 

Given the configuration of the closed-loop control 
systems’ poles, we have successfully achieved 
smooth and autonomous taking-off and landing 
systems with minimum overshoot and with 
reasonably short settling-time. However, while our 
µ-synthesis autopilot has slightly longer settling 
time compared to our H∞ counterpart, it can achieve 
smoother response as proven by the absence of 
overshoot.

Overshoots are undesirable transient responses 
which have to be suppressed. Failure to accomplish 
this task may create some damages and lead to the 
failure of the system, particularly when the pilot 
would like to land the aircraft.  It is also a waste of 
energy during taking off and landing process.
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Fig. 15 Time domain performance of the closed loop 
control systems (taking off, cruising and landing) for 
altitude and pitch

4.3 Maximum Tolerable Amount of Uncertainty 
Δ(jω)

At any given frequency, say for instance, 1ω , the 
maximum amount of uncertainty ∆ (jω) that can 

be tolerated while still maintain the stability of the 
closed loop control system is the reciprocal of the 
amplitude of the complementary sensitivity function, 

)(/1 ωjTo , as depicted by Fig 16.  

It is clearly evident that within our system 
bandwidth our µ-synthesis autopilot has successfully 
outperformed H∞ compensator in accommodating 
more uncertainty. This will clearly be beneficial for 
designing a real-time controller that can give better 
stability robustness to minimise the adverse impact 
of uncertainties (e.g. modelling error, noise, etc).
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Fig. 16 Maximum Tolerable Amount of 

Uncertainty, )(/1 ωjT=∆  for Μ-Synthesis Autopilot as 

denoted by blue line denoted by dotted green line.

V. Conclusion and Future Work
This paper presents a comparative study of powerful 
robust autopilots: µ-synthesis algorithm via D-
K iteration with respect to conventional H∞ 
counterpart. It has been clearly demonstrated that 
the proposed closed-loop control systems have 
successfully achieved reasonably short time domain 
response in the absence of overshoot and also 
achieved substantially good stability margin (GM=∞ 
and PM > 0). 

Compared to conventional autopilot, our new 
µ-synthesis autopilot can accommodate more 
uncertainty as illustrated by several db improvement 
in the value of Δ(jω) for both lower and higher 
frequency e.g. starting from rad/s. 
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This is essential since this frequency range is within 
the bandwidth of the closed loop control systems. 
Therefore, the proposed control schemes have 
clearly given better robust stability margin in terms 
of maximum tolerable amount of uncertainty that 
can be accommodated within their operational 
bandwidths.

Lastly, the time domain response of our µ-synthesis 
autopilot has also achieved more desirable response 
due to the absence of overshoot which is indeed not 
only safer but also more efficient for the operational 
of the aircraft itself.

Beyond linear modelling and robust control, in our 
future work, we shall consider non-linear modelling 
and autopilot for several reasons [36]. The first 
reason is due to the maturity of non-linear 
control, as with linear-control, supported with 
a variety of powerful methods and a successful 
history of industrial applications. The second 
reason is due to its intuitiveness and possibility 
to make it simple since the design process of 
non-linear controls are often deeply rooted from 
the physics of the plants. 
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