
A Comparative Study of
Data-Flow Architectures

University of Manchester
Department of Computer Science

Technical Report Number
UMCS-94-4-3

April 1994

Dr. David F. Snelling
Department of Computer Science

University of Manchester
snelling@cs.man.ac.uk

Professor Gregory K. Egan
Laboratory for Concurrent Computing Systems

Swinburne University of Technology
gke@swin.edu.au

Copyright © 1994. All rights reserved. Reproduction of all or part of this work is permitted for
educational or research purposes on condition that (1) this copyright notice is included, (2) proper
attribution to the author or authors is made and (3) no commercial gain is involved.

Recent technical reports issued by the Department of Computer Science,Manchester University, are
available by anonymous ftp from ftp.cs.man.ac.uk in the directory pub/TR. The files are
stored as PostScript, in compressed form, with the report number as filename.  They can also be
obtained on WWW via URL 

http://www.cs.man.ac.uk/csonly/cstechrep/index.html.
Alternatively, all reports are available by post from The Computer Library, Department of Computer
Science, The University, Oxford Road, Manchester M13 9PL, UK.



2

Abstract

Partly as a result of the diversity of the architectures and system
software, Data-Flow systems have not been compared directly.  In
this paper, three widely different Data-Flow systems are compared
using a relatively uniform metric which is representative of the actual
amount "work" performed by these systems to execute a small
collection of common benchmarks.  One feature, common to all
Data-Flow systems, forms the basis for a metric for "work", the
creation of tokens.  By counting the creation of tokens in all parts of
a Data-Flow system, an accurate measure of the work performed can
be obtained.  The three systems compared are the Manchester Data-
Flow Machine, the Stateless Data-Flow Architecture (also from
Manchester), and the CSIRAC II machine.  All machines perform
approximately the same amount of work when solving a collection of
benchmark problems, but two systems (CSIRAC II and SDFA)
exhibit successful exploitation of a memory hierarchy.
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1. Introduction

Data-Flow systems represent a unique class of computer architecture which combines
a heterogeneous, fine-grain model of computation with latency hiding mechanisms.
In contrast to the von Neumann model of computation, the execution of an instruction
in the Data-Flow model relies on the availability of its operands, rather than on a pre-
defined sequence on instructions.  Even in parallel versions of the von Neumann
model, sequencing of instructions is controlled explicitly by the programmer or
compiler.  In a Data-Flow system, the selection of instructions, for execution, is
performed by the hardware at execution time and is constrained only by the partial
order implicit in the program's data dependency graph.  The resulting computation is
fine-grained and exhibits a much higher degree of parallelism than code written for
parallel von Neumann machines.  This fine-grained parallelism is then used for
exploiting replicated hardware for increased performance, masking memory access
latency, and maintaining a uniform distribution of workload.

In Data-Flow systems, data values rather than being stored at particular addresses, are
tagged .  The tag includes the address of the instruction for which the particular data
value is destined, and other information defining the computational context in which
that value is used.  This context is called the value's colour .  The data value, together
with its tag, is called a token .  By considering the creation of a token as a single unit
of ``work'', an effective metric for ``work'' can be derived.  For example, where a
proliferate instruction counts as only one instruction it may create many tokens.  To
count instructions only would obscure the actual work performed by the system.  The
number of Created Tokens is, therefore, our measure of work.

In order for an instruction, requiring two operands to execute, both tokens must exist
and be brought together.  This synchronisation process is called matching .  Once
these input tokens are matched, the instruction is performed, and the result token(s)
sent on to subsequent instructions.  Note that tokens which do not require matching
may go directly to the execution unit.  These tokens are called by-pass  tokens.

The management of data structures, arrays in particular, is one of the major problems
in Data-Flow research.  Given that the semantics of Data-Flow languages are
basically functional in nature, the modification of a single element of an array
necessitates the creation of another array, identical to the original, except for the
altered element.  Multiple references to an array require multiple copies of the array,
even when only one element is needed.  Solutions are varied and depend largely on
the architecture, but several approaches predominate.

Data structures have two modes of reference, to the data structure as a whole and to
the individual elements.  The data structure is passed, as a unit, from one part of the
program to another, and references to, and modifications of, data structures are
performed on the elements.  This dichotomy gives rise to various semantics for data
structures.  The following techniques, representative of Data-Flow computing in
general,  are drawn from the two major Data-Flow languages Id [Nikhil87] and
SISAL [SISAL85].

SISAL streams - are one dimensional arrays, created element by element
in order.  Once elements have been written they cannot be modified;
they can only be removed from the head of the stream; but they may
be referenced randomly by an index.  They are non-strict, in the
sense that elements in a stream may be referenced before they have
been created.
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I-Structures and non-strict SISAL arrays - are both non-strict in the same
sense as SISAL streams, however, they are of a fixed size and shape.
Elements may be modified, which implies that the entire array is
(logically) copied and the element modified in the process.  There are
compilation techniques to avoid excess (physical) copying of arrays
[Cann88, Sargent86].

Strict SISAL arrays - are distinct, from the non-strict variety, only in that
before the pointer to an array is released the entire array must have
been created.  In this case, no references can occur prior to the
creation of a given element, since a reference requires a pointer.  This
mechanism is supported in software and requires no special hardware
support, but all elements of an array must synchronise before the
pointer can be released.  This can prove costly [Arvind88, Egan91].

M-Structures - are part of the Id language and are the most explicit form
of state in Data-Flow computation.  They are initialised explicitly
and then exist until destroyed.  Elements of an M-Structure may be
modified asynchronously in a variety of ways.

As is apparent from above, data structures in Data-Flow systems require special
treatment.  In most systems, there is an additional, specialised function unit (e.g. the
structure store in the Manchester machine) that provides the storage and performs
token colouring.  The most important aspects of this mechanism are the use of
pointers and reference counting.

This variety of approaches to data structure management gives rise to many of the
distinctions in Data-Flow systems and the difficulty in comparing them.  Most studies
of Data-Flow systems in the past have relied on metrics similar to those commonly
used in conventional computing, e.g. instruction count or execution time.  Execution
time, clearly the best metric for all such studies, has been avoided because of the
experimental nature of these architectures and their diverse and relatively slow cycle
times.

By taking the creation of a token as a single unit of work, an effective metric for
"work" can be derived.  For example, where a proliferate instruction counts as only
one instruction it may create many tokens.  To count instructions only would obscure
the actual "work" performed by the system.  The number of Created Tokens  is,
therefore, our measure of work.

In the remainder of this paper, the three Data-Flow systems are described briefly with
particular reference to the techniques used to manage data structures, the source of
greatest diversity and most of the Created Tokens.  The next section outlines the
experimental framework used to compare these systems, and the last two sections
present the results of the comparative experiments and draw conclusions from them.

2. Three Data-Flow Systems

Although widely different, all three of these Data-Flow systems have their origins in
early research into Data-Flow architectures at the University of Manchester.  All are
based on the data driven model described above, but vary significantly in the details
of their implementation.  For complete details of these architectures, the reader is
referred to the literature [Egan91,Gurd87,Snelling93].  In the following sections, the
architectural details relevant to this paper are presented, in particular the memory
organisation, data structure colouring, the instruction-set architecture, and workload
distribution mechanisms.
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2.1. Manchester Data-Flow System

The Manchester Data-Flow Machine (MDFM) represents one extreme in this
collection of systems.  It has a relatively complex instruction-set which includes
vector style operations.  The MDFM relies exclusively on latency hiding to manage
non-local activity, as opposed to attempting to exploit locality directly.

2.1.1. Memory Organisation

The system is composed of four types of elements: one or more processing elements,
one or more structure stores, one global allocator, and one throttle.  The processing
element contains the matching store where tokens are stored until they are matched by
tokens destined for the same instruction. Tokens issued from the function units are
placed onto the switch network and routed to one of the processing elements or
structure stores, the global allocator, the throttle, or the host.

The structure stores are managed dynamically as a single logical memory which
contains all data structures. Scalars are implemented as single tokens and are stored in
the matching stores.

There are several approaches to managing this kind of dynamic memory
[Kawakami86]. The strategy adopted in the MDFM involves dividing the virtual
address space into two parts, one used for smaller structures (typically less than 10
locations) and one for larger structures. This dual allocation strategy involves both
local and global memory management. The global allocation of "large" structures is
designed to take advantage of interleaving, whereas, the distributed allocation of
small structures avoids contention at the global allocator.  Memory management is
based on a reference counting scheme performed by software, but the hardware
performs the garbage collection function.

2.1.2. Data Structure Colouring

Data structures are stored colourlessly in the structure stores.  They are, therefore,
accessible from all contexts via a pointer.  As the pointer to a data structure is passed
from one context to another, it is re-coloured.  When a data structure reference occurs,
the pointer (along with information describing what part of the data structure is
required and where it is to be sent) is routed to the appropriate structure store.  The
structure store uses the context described by the pointer token to colour the data
structure tokens.

2.1.3. Instruction-set Architecture

The instruction-set of the MDFM is relatively complex.  Although instructions may
have only one or two inputs, each instruction may produce several results.  In
particular, the proliferate instruction produces a stream of values with different index
fields in their tags.1  Even two result instructions may produce tokens with differing
tags and values.  There is also a tuplicate instruction which sends copies of the
incoming token to a number of successive instructions.  These complex instructions
obviate the need for many intermediate tokens in a data flow graph, e.g. the tuplicate
instruction eliminates the need for the intermediate arcs of a duplicate tree.

1 Related instructions can also modify the value of these tokens, such as incrementing the value for
each successive token.
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2.1.4. Workload Distribution

Workload distribution in the MDFM is based on a pseudo-random hashing function
applied to the tag field of each token.  In particular, this function uses not only are
colour and index fields, but the destination address as well.  The result is that a token
created by one instruction and destined for another planted "near by" will invariably
be routed to a different processor.  This prevents the MDFM from exploiting temporal
locality within code blocks.

2.2. Stateless Data-Flow Architecture

This system was designed specifically to redress the "latency-hiding-only" approach
of the MDFM.  A SDFA system is a homogenous collection of processors connected
by a network.  Each processor includes a matching store, a token queue and a
processing element.

2.2.1. Memory Organisation

As its name implies, the SDFA system has no explicit notion of state.  There are no
structure stores, and only extract-wait   functionality is provided in the matching
stores.  However, the SDFA architecture has a hierarchical memory organisation.
Within each processing element there is small matching store (Short Stay Matching
Store) where tokens wait a short time in the expectation that their matches will arrive
soon.  If no match occurs in the SSMS after a prescribed number of cycles, the token
is forwarded to the main matching store for that processor.  The main matching store,
in each processor, is composed of multiple banks (8 in the current design), each with
two levels.  The SDFA machine, therefore, has a three level memory hierarchy.

2.2.2. Data Structure Colouring

Data structures, arrays in particular, are collections of data values distinguished by the
index fields of their tags.  There are four index fields within the tag: X, Y, Z, and S.
The S field is a scratch field for use in reductions and is not used as an array
dimension.  Arrays are not stored at a particular address, and pointers do not exist.
The matching stores provide the storage space for all array elements, which are stored
and matched using the same associative mechanism as scalar values.

2.2.3. Instruction-set Architecture

The instruction-set for SDFA is based on a classical two-input, two-output Data-Flow
model.  The basic philosophy of the instruction-set is that it should be simple and
RISC-like.  The goal of simplicity (motivated by the desire for speed of computation,
ease of compilation, and cost of hardware) is addressed by adhering to a short list of
requirements:

Each instruction:
a) has 1 or 2 inputs;
b) must have at least one input which is a token;
c) may have one input which is a literal;
d) produces at most one result value;
e) produces results with exactly one tag value;
f) has 0, 1, or 2 defined destinations.

These instructions may perform up to three operations as a result of a single match,
representing a kind of super-scalar approach.  The restrictions are that 1) the second
two instructions must be simple integer operations (on either the data or tag fields of
the token), 2) the second two instructions must each have only one token as input, and
3) no more than two tokens can result from the collection of instructions.  Therefore,
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the tokens passing between these instructions are not included in the total token
count.

2.2.4. Workload Distribution

Spatial locality is exploited in SDFA through the hashing function used to route
tokens to processors.  One of the aspects of this function is a locality  factor .  It
represents how many of the low order bits in the index fields are not used in the
hashing function.  This insures that tokens with neighbouring indices are, for the most
part, processed on the same processor.  This simple mechanism is exploited naturally
in applications, either as a result of template structures, as in finite difference
schemes, or algorithmic techniques, such as unit stride vector processing.  In SDFA,
these structures and techniques can be exploited in several dimensions, rather than
just the dimension corresponding to the linear organisation of conventional memories.
The part of the tag which keeps track of the recursive structure of the program is also
used in this hash function.  This provides distribution of unstructured applications.
The instruction address is not used.

2.3. CSIRAC II

The CSIRAC II architecture is directly descended from one of the author's early work
at Manchester [Egan79]. Its roots lie in the study of Data-Flow machines as applied to
image processing and robot control [Egan81,Egan85].  The architecture is unusual in
that the temporal order of tokens with the same colour on the same graph arc is
maintained.

2.3.1. Memory Organisation

Data structure storage, provided by the Object Store of the CSIRAC II, is similar to
the MDFM and MIT machines.  The major difference being that large complex data-
structures may be associated with a single Object Store Cell.  Read-before-write as
well as standard read and write functions are supported.  All Object Store cells carry
state information and reference counts.  The state of cells may be interrogated to
determine memory state e.g. full or empty.  Data structures are stored colourlessly as
in the MDFM.  The Object Store itself is partitioned and the partitions are associated
directly with processing elements.  The particular partition is determined by the least
significant bits of the descriptor.

Interestingly the CSIRAC II architecture still retains a comprehensive set of in-graph
storage nodes [Egan87], with the Object Store being a comparatively recent addition.
The default on CSIRAC II is to transmit structures as a sequence of datum in separate
tokens (or as several datum in a single token) and not use the Object Store at all.  In
this sense it is almost identical to the 'stateless' operation of the SDFA.

The matching store has a two-way set associative cache to capitalise on temporal
locality.  The arriving token's node number and colour is hashed to a store address.  In
pipe-lined graphs, where no colours are used at all and temporal ordering of tokens is
assured by the hardware, this corresponds to a direct indexing operation with no
address collisions.  The address is used in a conventional manner to access the cache.
The cache and associated large backing memory is managed by the matching store's
controller.  The matching store queues arriving tokens (with the same colour and
input arc) thus preserving temporal ordering.

2.3.2. Data Structure Colouring

CSIRAC II tokens carry a single undifferentiated colour tag; it does not separate
index and colour fields.  This single tag is used to distinguish between different
function or loop body instantiations. The descriptor, used to reference a data structure,
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in the Object Store contains an index and a vector of zero or more destinations to
which the accessed data structure should be returned; the descriptor is contained in a
single token.  The colour of the returned object is the same as the descriptor.  Unlike
the MDFM, the CSIRAC II Object Store does not produce sequences of tokens with
different index field values, relying instead on the temporal ordering on tokens. Data
structure elements, where necessary, are coloured explicitly by the execution graph.
In the case of pipe-lined execution the hardware maintains tokens in producer
consumer, and possibly index, order [Egan91].

2.3.3. Instruction-set Architecture

The instruction set of CSIRAC II, like the MDFM is also relatively complex,
although in practice only a small subset is used.  Instructions may have one or two
inputs and many outputs usually with a single value.  Instructions may thus emit
many copies of a single value to different destinations without recourse to duplicate
trees and their associated latencies.  Exceptions to this include instructions,
responsible for loop throttling, the generation of loop indices, and proliferate nodes.
CSIRAC II's  proliferate nodes, unlike those of the MDFM, generate multiple copies
of the input value and pass them to the output arc with the same colour as the original
input token.  In the context of this study the proliferate token is used to generate
multiple copies of loop arguments for pipe-lined loops [Egan87].

2.3.4. Workload Distribution

Workload distribution is performed by hashing the token colour with the compile
time processor 'allocation' of the destination instruction.  It needs to be said that a
copy of the entire graph exists on each processor and this scheme may be viewed as a
double hashing.  The compiler may set the processor field of all instructions to zero.
The effect of this is to have all instructions involved with a particular colour, usually
a loop or function body, execute on a single processor.  The allocation scheme under
these conditions is similar to that used SDFA.  This compile time option is used in
this study to give high locality, which can cause load imbalance under some
situations.

3. Experimental Framework

The difficulty in comparing systems, as distinct as the MDFM, SDFA and CSIRAC II
machines, arises from the need to measure something in common to all systems that
represents the amount of work done by each systems. Instruction count is
inappropriate since the complexity of the MDFM's and the CSIRAC II's instruction-
sets far exceeds that of the SDFA system. Operation count is ruled out as defining
what constitutes an operation can be rather difficult, and the use of cycle count
assumes that the architecture is independent of technology, clearly a falsehood.
Likewise, using execution time is out of the question.

3.1. Token Count as a Metric

Since all data values, in these systems, are carried on tokens, the number of tokens
generated by all components of the system is taken as a measure of the total work.
The creation of a token, as an abstraction of work done by a Data-Flow system, is
quite natural and is a common statistic gathered by the simulators.  Notice that this
count includes tokens generated by the MDFM and the CSIRAC II's structure stores
as well as by their processing elements.
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A token in most Data-Flow machines, is a well defined entity.2  Although the size of
the data value and the tag vary, the token is relatively standard.  It is straight forward
to identify where a token is created or copied within a Data-Flow system.  These
token creations serve as a measure of the amount of work performed by the system.
Each time a token is created in a function unit or copied from a structure store, the
token count is incremented.  This measure is independent of the complexity of the
instruction, e.g. proliferate type instructions contribute counts depending on the
number of tokens created.

Token count includes the ability of the software to reduce the number of tokens
created, but is independent of the cycle time, a necessity when comparing such
diverse systems.

3.2. Approximations

The following assumptions underlie the experiments discussed below:

• CSIRAC II has the ability to transmit multiple values, such as
vectors, as a single "token" in the form of a multiple word network
packet.  For comparison purposes, each such CSIRAC II network
word (containing two values) is counted as containing two tokens.  It
should be noted that, in this respect, CSIRAC II is 50% more
efficient at transmitting structured data than the other two systems.

• The structure store garbage collection in the CSIRAC II and MDFM
is not included in the token count metric. There are no such
overheads for the SDFA or CSIRAC II when using transmitted data
structures.

3.3. Benchmarks

The following are summaries of the benchmark programs used in this study.  The
codes are all available in SISAL from the authors by e-mail and listings can be found
in [Snelling93].

3.3.1. Adaptive Quadrature

Adaptive quadrature is a multiply-recursive program that computes the area
underneath a function by refining a trapezoid integration method until an error
tolerance is reached.  Its interesting properties are that it is both numerical and
requires multiple recursion.  It does not use arrays.  The amount of work done by Aq
depends on a parameter, called the tolerance, which determines the accuracy of the
area computation.  The reciprocal of the tolerance is used as the x-axis in the plots
presented later.

3.3.2. Gaussian Elimination

Gaussian elimination is a computation with cubic complexity, which uses both array
constructs and recursion.  It has bad load balancing characteristics and is, therefore,
useful in workload distribution studies.

2 The compound tokens in the CSIRAC II are counted based on the number of elements in the
multiple token, see approximations below.



10

3.3.3. Matrix Multiply

Matrix multiply is the most common of all computational benchmarks.  It is both
trivial and complex.  Although load balancing well, it produces high degrees of
parallelism and can create "explosions" in resource needs.

The MDFM and CSIRAC II matrix multiply programs are based on that used
regularly in MDFM studies [Sargent86, Teo91].  It is written under the assumption
that the second matrix is already transposed.  The SDFA version performs the
transpose as part of the computation.

3.3.4. Queens

Queens is a program which computes the number of arrangements of N queens on an
NxN chess board, such that no queen is threatened by another.  It is intensively
multiply-recursive and uses many small arrays.  The load balancing characteristics of
Queens are unpredictable.

3.3.5. Shallow

Shallow is the closest to an application program used in this study.  It requires several
array variables, including temporaries, and uses both array constructs and recursion.
It is the largest and most complex code in the suite.  A discussion of this bench-mark
can be found in [Hoffmann88].

3.4. Compilation Method

In this experiment, the above codes are executed on the Manchester Data-Flow
Machine Simulator (NMR) [Teo91, Gurd92], the SDFA simulator and the CSIRAC II
simulator/emulator.  The following sections describe the implementation of the
benchmark suite on the three systems.

3.4.1. MDFM

All the following options are applied at the IF1 to Data-Flow code translation phase
of the compilation process [Sargent85]:

-v Vectorize the code in loops, eliminating redundant addressing.

-clb 0 Generate code assuming all arrays have zero lower bound.

-inl N Inline functions until their size exceeds N IF1 nodes.

-blo N Inline recursive functions until their size exceeds N IF1 nodes.

Their use in the various programs was as follows:

Aq3 -blo 250

Gauss4 -v   -clb 0

3 The recursive inlining was tried for increasing values until the performance improvement became
constant.  In this case, as with Queens below, this was a substantial increase in the number of
nodes, namely, an increase of 1180%.

4 This implementation of Gaussian elimination is performed "upside-down" so that the constant
lower bound optimisation could be applied.
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Mm -v   -clb 0

Queens5 -clb 0   -blo 500

Shallow -v   -clb 0   -inl 1000

3.4.2. SDFA

The SDFA codes are hand written in assembler, since no compiler exists.  Recall that
the SDFA instruction-set is simple and therefore, frequently, several instructions are
required where one suffices on the MDFM or CSIRAC II.  These codes were written
before the super-scalar facility was added to the simulator, but performance improved
nonetheless, see [Snelling93].

Two factors limit the degree of concern here.  For the numeric codes, the SISAL
compilation system for MDFM is known to be good.  This is highlighted by the
instructions per floating point operation ratios for the various codes (MDFM: Aq -
2.6; Mm - 2.0; Shallow 4.6; and Gauss - 3.0).6  The CSIRAC II with no low level
optimisation achieves (CSIRAC II: Aq - 2.03; Mm - 0.37; Shallow - 4.4; and Gauss -
6.35).

The SDAL code is written for a macro assembler; therefore, a small library of
frequently used SDAL code fragments is employed to simplify code generation.
Many redundant operations could be removed by techniques such as loop unrolling
and loop invariant removal, if the macros were not used.

3.4.3. CSIRAC II

The benchmark programs were compiled using the Optimising SISAL Compiler (osc)
[Cann89] with full IF1 optimisation. Optimisation includes common sub-expression
elimination, loop fusion and unrolling but does not include IF1/2 structure
optimisations.

The resulting IF1 intermediate code was compiled using the CSIRAC II IF1 translator
[Webb93] generating pipe-lined loops for all benchmarks excluding Aq which has no
loops.  By pipe-lined code we mean that no colour tags are used and execution relies
solely on the ability of the hardware to maintain the temporal ordering of tokens.  It
may be observed that for many scientific applications there is no need for hardware
support of colours. The Aq, Gauss, and Queens benchmarks involve recursion and
require colours to support this.

Code generated for Aq, Queens and Mm uses transmitted structures and is, in SDFA
terms, 'stateless'.  Gauss and Shallow are the only benchmarks using the Object Store.

The only optimisation performed after translation from the IF1 is dead code
elimination. Low level optimisers, equivalent to those for the MDFM, have not been
implemented for the CSIRAC II, resulting in significant penalties for Gauss and
Shallow.

The IF1 to CSIRAC II code translation flags used were:

-a use structure stores (default -  transmitted stateless structures)

5 In this case, the code size increased by 1560% due to recursive inlining.
6 This ratio has its failings as a measurement, but it has nonetheless been used in the past

[Böhm90a].
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-p use pipe-lined loops (default - dynamically unravel loops)

-e1 all nodes comprising a loop or function body for a given colour
execute in the same processor

The translation flags used for each benchmark were:

Gauss, Shallow -a -p

Aq, Mm -p

Queens  -p -e1

The following additional optimisations were performed manually for the Mm
benchmark in an attempt to explore the CSIRAC II performance on vector operations:

replaced sdot function with the inner product intrinsic function;

performed constant lower bound optimisation;

removed code associated with SISAL Fibre compatible output
formatting.

4. Analysis of Results

Two comparative experiments were conducted on the three systems.  The first
compares the total work performed (tokens created), and the second examines the
locality behaviour of the three systems.

4.1. Total Work

It is clear that the 'stateless' computational model (as in SDFA and transmitted
structures versions of CSIRAC II codes) carries with it some specialised costs.  These
costs manifest themselves in two ways.  First, there is the potential that additional
copies of data structures might be required that are not required in state based
solutions.  Second, since 'stateless' data structures are passed in their entirety through
function boundaries, rather than just the pointers, the re-colouring data structure
elements could prove costly.

There is reason to believe that the impact of these factors is not excessive.  In most
Data-Flow machines, the bulk of the extra copying and colouring must be performed
anyway.  However, the part of the machine performing the colouring may vary
depending on the computational model.  For example, in the MDFM colouring of data
structures is done in the structure stores rather than in the processing element.  In
CSIRAC II colouring, where necessary, is performed by the processing-elements.
Also, these extra costs could be partially compensated for by inlining techniques, and
balanced against the costs of garbage collecting in the structure memories.  A
comparison between the SDFA, the MDFM and CSIRAC II is, nonetheless,
warranted.
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4.1.1. Results
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Figure 1: Token Count in Adaptive Quadrature (Aq).

The CSIRAC II performs slightly better than the MDFM or SDFA on Aq. This is  due
in part to the local throttle mechanism used by the CSIRAC II.
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Figure 2: Token Count in Gaussian Elimination (Gauss).
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The CSIRAC II performs significantly worse on Gauss due largely to excessive
copying used to perform the array concatenate operation. Lack of a low level
optimiser contributes to the relatively poor performance.
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Figure 3: Token Count in Matrix Multiply (Mm).

The supplementary curve plot for the CSIRAC II is for where the comparison metric
would be network words rather than datum. As can be seen aggregation of datum into
a token with a single tag can be advantageous.

Two dimensional arrays are not first class constructs in SISAL, rather they are
represented as an array of pointers to one dimensional arrays.7 This has resulted in a
penalty for the MDFM and would have for the CSIRAC II if it had used its Object
Store. In this case, the CSIRAC II has, with modest hand optimisation capitalised, on
its vector tokens and associated vector instructions while using entirely transmitted
data structures.

7 This is partially an artefact of the base language, SISAL, which supports this model for arrays.
However, if the execution model supported multidimensional arrays, a compiler could convert this
to a multidimensional array representation.
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Figure 4: Token Count in the N Queens Problem (Queens).

The final point in the CSIRAC II curve is missing due to simulator limitations.

In all cases, the rapid growth in computational load with board size results in a
sudden increase in the number of tokens created.  Because of this exponential growth,
a small difference in the number of tokens created in the multiply recursive function
causes a substantial difference in the final token count.  This accounts for the failure
of the SDFA system to track the other two as closely as it does in the other cases.
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Figure 5: Token Count versus Grid Size in the Shallow Water Equations (Shallow).
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Again the MDFM and the CSIRAC II have incurred a significant cost through the use
of SISAL array representations. The lack of a low level optimiser has further
penalised the CSIRAC II. For Shallow the number of time steps was fixed at 8.

4.2. Locality

One of the fundamental motivations behind the SDFA and CSIRAC II architectures is
to benefit from the distributed memory model.  This experiment compares the amount
of work performed locally for each of the three machines.

4.2.1. Method

In most cases, the largest versions of the programs from above are run on a 16
processor MDFM, CSIRAC II, and SDFA systems.  The exception is Queens which
case a board size of 7 is used.  As above, highly optimised versions of the MDFM and
CSIRAC II codes are used.  Only the original versions of the SDFA codes are used.

For the purposes of this study, the important part of the MDFM traffic is that which
travels to and from the structure stores, because it is this that will always be global,8
regardless of what locality facilities are incorporated in the MDFM.  The same applies
to the CSIRAC II when using stored structures.

For the SDFA system two measurements are taken, the total number of tokens created
and the number of these which travel between processors.  This is used to compute
the percentage global traffic.  For the MDFM and CSIRAC II three measurements are
taken, the total number of tokens created, the number of these which travel over the
switch network, and the number travelling to or from the structure stores.  These
values are used to compute the percentage global traffic and the percentage structure
store traffic.

4.2.2. Results

The results obtained from the percentages study are presented in figures 6 and 7.  The
percentages, in figure 6, represent the fraction of all created tokens which were
transmitted across the network of each machine, i.e. the percentage of non-local token
traffic.  The percentages, in figure 7, represent the fraction of all created tokens which
were transmitted to or from the structure memories.  These are the tokens that must be
transmitted across the network, due to the implied shared memory model of stored
data structures.

8 In this 16 processor experiment, an average 1/16-th of this traffic could be counted as local if the
structure stores were integrated into the processing elements.  It would be difficult to arrange for
more than 1/16-th of the structure store traffic to be local, since data structures are colourless, see
Chapter 2.  Therefore, all structure store traffic is considered global.
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Figure 7: Network Structure Store Token Traffic.

The low figures for the MDFM and CSIRAC II memory traffic on Aq and Queens,
are due to the nature of the programs.  For Aq MDFM uses the structure stores only
for activation name recycling counters, and Queens has one array for each board, a
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maximum of 7 elements long. The CSIRAC II does not use the structure store for Aq
and Queens.

It is acknowledged that the global traffic in the MDFM is a worst case, due to the
distribution function and basic architecture.9  The structure store traffic, on the other
hand, represents a best case since it assumes that all  non structure store traffic is local.

5. Conclusions

First,  it is possible to compare experimental systems with diverse architectures using
a meaningful, simple metric which is not rendered useless by the experimental nature
of the systems.

Second, although mainstream Data-Flow computing assumes the existence of a
specialized structure memory, the provision of such is not a requirement. The
stateless operation of the systems above did not cause substantial reductions in
performance.

Third, it has been argued recently, see [Culler92], that the increased processor state
required to support latency hiding in the traditional Data-Flow systems will
eventually force either a limit on the scalability of the system (due to increasing
latency) or a reduction in performance (due to the cost context switching).  A multiple
level memory hierarchy, which can be exploited through locality in computations,
reduces the impact of this argument.  In two of the systems presented here (SDFA and
CSIRAC II), a memory hierarchy exists and the systems employ a variety of
techniques to extract locality from the computation.  Although there is a barrier
inhibiting the scaling of traditional Data-Flow systems, there is no fundamental limit.

Lastly, in the context of evolving work on multi-threaded architectures, the tokens
created locally to the processor may be regarded as being equivalent to register
transfers, thus providing us with the multi-threaded equivalent of Tokens Created .
Aggregation of low level instructions into threads is still not well understood, but
what seems clear is that in practical codes the larger the multi-processor configuration
the smaller the aggregations must be to permit effective load balancing and work
distribution.  Tokens passing across the network are equivalent in both cases, and as
hardware designers, we know that this traffic is an essential parameter in sizing the
communication network. Unlike Tokens Created or its multi-threaded equivalent, the
more conventional measure of instruction count is of almost no use in this critical
element of multiprocessor design.
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