
Department of Electrical
and

Computer Systems Engineering

Technical Report
MECSE-10-2007

Estimating the communications cost of application
accelerator attached processors through memory address
tracing

T. Ramdas and G. Egan



Estimating the communications cost of application accelerator
attached processors through memory address tracing

Tirath Ramdas
tirath.ramdas@eng.monash.edu.au

Greg Egan
greg.egan@eng.monash.edu.au

Centre for Telecommunications and Information Engineering
Monash University, Melbourne, Australia

Abstract

Application specific processor (ASP) accelerators are an impor-
tant aspect to overcoming the growing disparity between theoret-
ical peak performance and sustained actual performance for key
scientific applications with general purpose systems. A potential
stumbling block is that the performance gains of the ASP would
be lost due to communications limitations between the host system
and the ASP. In many instances, an analytical model of the kernel
of the application is available to make strategic decisions regarding
what to do on the host and what to do on the ASP, with communi-
cations minimisation in mind. Unfortunately, there are instances
where such straight-forward analytical models are not available.
We propose the use of memory address tracing to derive an esti-
mate of relative communications expense for candidate ASP ker-
nels. To demonstrate the viability of the method, we present two
concrete example application kernels: molecular dynamics and se-
quence similarity detection. We go on to present preliminary find-
ings of the method on a computational quantum chemistry applica-
tion.

1 Introduction

As programmable logic devices, specifically Field-Programmable
Gate Arrays (FPGAs), achieve very large capacities, and as sys-
tems integrators such as SRC, SGI and Cray appear motivated to
provide high performance interconnects to FPGAs (and with high
performance commodity interfaces becoming mainstream as well),
the viability of attached processor (AP) application accelerators, or
application specific processors (ASPs), seems to encompass an ever
growing range of applications. A survey of Smith-Waterman bioin-
formatics accelerators was presented in [8], where all the surveyed
accelerators were integrated with a host system thru PCI. Similar
speedups have been reported for applications such as molecular dy-
namics [3] and floating-point matrix multiplication [2].

However, failures also abound. For example, an initial attempt at
implementing a BLAST bioinformatics accelerator [6] was unsuc-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

cessful in producing speedup, and the authors attribute this to a
communications bottleneck between the host and the accelerator.

FPGA-based accelerators are attractive for obvious economic rea-
sons, and the dramatically reduced “barrier-to-entry” precipitates
the exploration of application accelerators which would not have
the economic momentum to warrant Application Specific Integrated
Circuits (ASICs). Having said that, this paper is concerned only
with ASP and host system communications, and therefore distinc-
tions between the fabric upon which the application accelerator is
built – be it FPGA, ASIC, or a mixture of both – will be disregarded.

The MD-GRAPE [11] is widely held as being a highly successful
application accelerator, where the application is molecular dynam-
ics. A salient point is that the core of the application – i.e. Coulom-
bic force term evaluations – exhibits O(N2) computation time with
O(N) data requirement (where N is the number of atoms in the sys-
tem under study). This implies that any communications cost will
be easily amortised by the very large computational requirements
of the application kernel. The same reasoning applies to the pre-
viously mentioned Smith-Waterman application accelerators: here
too computation time is O(N2) with O(N) data transfer.

We present a method to develop an understanding of the asymptotic
computation vs. communication behaviour of a candidate for ASP
deployment. Our method is based on instruction and memory trac-
ing. This method allows one to begin to understand the behaviour
and requirements of a candidate kernel very early in the project life-
cycle, without the need for an analytical understanding of the kernel
and the overall application.

The proposed method falls within the domain of hardware/software
codesign. Indeed, many hardware/software codesign partitioning
schemes enforce communications cost as a constraint. One solution
is PACE [4], which is a sub-system within the LYCOS system [5].
This system requires input in the form of a subset of C and VHDL,
which severely limits the applicability of the method to existing
applications, such as GAMESS [9] which is written in Fortran 77.

LYCOS is not unique in this regard. Systems such as POLIS [1] and
many others also require specification to be in the form of either a
subset of some language or an entirely new language. Systems such
as OCAPI-xl [13] and SystemC [10] employ special object classes
to encapsulate multiple system specifications for a given object.

Many existing applications will not be able to directly exploit these
systems, and ultimately it may be necessary to port over parts of
the application to a new language/specification, which requires an
analytical understanding of the application kernel. Unless educated

MECSE-10-2007: "Estimating the communications cost of application accelerator ...", T. Ramdas and G. Egan



decisions can be made about where to start the porting activity, this
will often be an intractable job. We propose a methodology to aid
such decision making.

The method we proposed can be used when an analytical model
of the target application does not yet exist, and regardless of what
language the application is written in.

The contributions of this paper are:

• A demonstration of the application of trace analysis towards
asymptotic computation vs. communication comparison of
potential host/ASP partitions for early design space explo-
ration. We propose and define several new metrics in the
following section that allow memory tracing to be applied
towards estimating the communications cost of candidate
host/ASP partitions.

• The proposed method does not rely on an analytical model of
the candidate kernel.

• The proposed method does not rely on language specific
mechanisms such as object classes, pre-processor directives
(e.g. #pragmas), existing IP blocks etc. and is therefore a
viable early estimation tool for a very wide range of existing
applications. The only required program augmentation is the
instrumentation of the candidate partition with calls to start
and stop tracing which, with the currently prescribed trace ex-
traction tool, is a trivial task.

• The results obtained with this method can be used to suggest
partitioning schemes to HW/SW co-design systems that rely
on user-driven partitioning advice, such as POLIS [1].

• The proposed method is stimulus based and therefore candi-
date partitions may be exercised with real-world data.

• An initial investigation into communications requirements of
a potential host/ASP partition for a computational quantum
chemistry program, i.e. GAMESS [9].

This paper presents the proposed methodology, two test cases, and
preliminary results for the method on a realistic computation lack-
ing a clear analytical model. Section 2.1 describes the methodol-
ogy and many of the terms adopted for the rest of the paper. Sec-
tion 2.2 describes the two test cases, i.e. molecular dynamics and
Smith-Waterman. Some limitations of the method are explained in
sections 2.3 and 2.4. Section 3 presents our initial findings of the
method on a candidate partition for GAMESS. Specific gaps to be
addressed with further work are briefly discussed in section 4. De-
tails on the software utilised by this method are provided in section
5, followed by concluding remarks.

2 Memory Trace Analysis

Uhlig and Mudge present a survey of memory trace analysis meth-
ods and techniques in [12]. Instruction and memory address tracing
is well-entrenched in supercomputing; here we discuss how tracing
may be adopted for host/ASP partition evaluation. For details on
the software components used for this analysis, see section 5.

2.1 Methodology

The general sequence of steps of this method are as follows:

1. The candidate partition is instrumented with calls to start and
stop tracing. This requires that all possible paths in the rele-

vant sections of the code be accounted for. A partition may
be adopted along existing subroutine boundaries, and there-
fore instrumenting the partition would be achieved by simply
inserting a call to start tracing before the candidate routine
is called, and inserting a call to stop tracing once the routine
returns.

2. Selection of stimulus (i.e. input) for the program that exer-
cises the candidate partition. In some cases, this is a simple
step as the computational procedure of the candidate parti-
tion does not differ according to input, however in some cases
there are different computational paths for input that meet dif-
ferent conditions.

3. The program is executed and the instruction trace is generated.
Subsequently the memory address trace is extracted.

4. The memory address trace is divided into separate read and
write traces, but the sequence of reads and writes must be
maintained.

5. The number of read-before-write (RbW) samples and write-
after-read (WaR) samples are counted.

The WaR term used here is familiar in the context of internal pro-
cessor pipeline data dependencies, but perhaps less so in the context
of memory tracing. The meaning of the term WaR as used here is
slightly different than the use of the term in the context of data de-
pendencies. The two conditions may be described as follows:

RbW A memory address is referenced exclusively for reading, or
the first reference to the address is for reading, and subsequent
references may include writes and reads. This accounts for
data transfer from the host to the ASP (toASP).

WaR A memory address is referenced exclusively for writing, or
the last reference to the address is for writing, and previous
references may include writes and reads. This accounts for
data transfer from the ASP to the host (toHost).

The above labels are applied to memory addresses, not memory
references. A count of the number of RbW samples provides an
estimate of the amount of data that needs to be passed to the routine
– i.e. input data, which we shall call toASP – and a count of the
number of WaR samples provides an estimate of the amount of data
that is generated by the routine to be passed to other routines – i.e.
output data, which we shall call toHost. Memory addresses that fail
to meet these two conditions may be considered internal scratch
space; while counting this could be useful in estimating the amount
of local memory that the ASP needs, this matter is outside the scope
of this paper.

2.2 Test Cases

We employ two test cases to verify that the method works: Molec-
ular Dynamics long-range Coulombic force term evaluation, and
simplified Smith-Waterman sequence similarity score reporting.
The kernels exercised here are simplified and well understood ana-
lytically, and are therefore suitable for demonstrating the method’s
abilities and limitations in exposing communications requirements.

The molecular dynamics test case is considered first. The com-
ponent of the code specifically under study is the evaluation of
the long-range Coulombic interactions between all atoms in the
molecule; therefore for N atoms there would be N2 force terms to
evaluate.

We instrument the kernel responsible for computing the net force

MECSE-10-2007: "Estimating the communications cost of application accelerator ...", T. Ramdas and G. Egan



experienced by an atom due to the inter-atomic charge interaction
with all other atoms, i.e.:

Fi = ∑
a=0→N,a6=i

Qi×Qa

ri,a
(1)

for all atoms in the system, i = 0→ N. A random constellation of
atoms is generated as a stimulus. The program is then executed, and
instruction tracing is performed. After that the generated tracefile
is processed, producing the results depicted in figure 1. The results
agree with the analytically predicted behaviour.

In plots 1(a), 1(b) and 1(c) N is the number of atoms in the molecule
under simulation. Plot 1(a) depicts the computation time scaling of
the kernel. Plot 1(b) depicts the memory space scaling of the kernel.
Plot 1(c) depicts the RaW and RbW scaling of the kernel.

Note plot 1(d); the instruction scaling is plotted vs the correspond-
ing address scaling, and we define the behaviour exhibited in this
plot as operational intensity. This plot effectively combines fig-
ures 1(a) and 1(b). The more operationally intense a kernel is (as
opposed to operand intense) the more suitable it is for ASP deploy-
ment, at least in terms of minimising the impact of communications
overhead. Operational intensity provides a convenient means to
compare different application kernels with different interpretations
of N. A kernel which exhibits a steeper curve, i.e. larger instruc-
tion scaling vs. data scaling, would likely be capable of amortising
communications expense thru a large “amount” of computation rel-
ative to the “amount” of communication. This metric is useful to
compare different applications with different interpretations of N.

From the plots in figure 1, it is evident that as N increases, the
computational cost increases at a rate that dramatically exceeds the
required data transfer. Therefore, the cost of data transfer is easily
amortised by the computation time.

Figure 1(c) also reveals that the candidate kernel exhibits asymmet-
ric communications requirements, i.e. toASP scales as a factor of 7
while toHost scales as a factor of 3; therefore 70% of the available
communications bandwidth should be allocated for unidirectional
data transfer going toASP.

We now turn our attention to the second test case application:
Smith-Waterman sequence alignment. Two sequences of length N
are lined up against a matrix (of dimensions N×N) – it should be
pointed out that in practice the two sequences could be of different
lengths N and M (and consequently the matrix would have dimen-
sions N×M). Each cell in the matrix is then scored – this step is
called matrix fill. Figure 2 presents such a matrix, as well as an
indication as to how the matrix cells may be populated in parallel
– readers interested in a slightly more detailed discussion of this
application are referred to [8].

Here we present a slightly contrived variation of a typical Smith-
Waterman workflow; typically the matrix fill stage is followed by
traceback, which reports an alignment sequence. Here, however,
we assume that the goal of the algorithm is merely to report the
largest single value in the scored matrix, as an indication of the
similarity of the two query sequences.

The method is applied to this kernel, and the results are presented
in figure 3. Plot 3(a) tells a similar story to the MD case (plot 1(a))
however plot 3(b) reveals the memory space cost of the O(N2) ma-
trix. However, keep in mind that our main focus here is communi-
cations expense; the O(N2) matrix need not be communicated be-

y = 143x2 + 18x + 21

0

10

20

30

40

50

60

70

80

0 200 400 600 800

M
il

li
o
n

s

N (number of atoms)

In
st

r
u

c
ti

o
n

s 
Is

su
e
d

(a) Instruction scaling.

y = 7x + 18

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800

N (number of atoms)

U
n

iq
u

e 
A

d
d

re
ss

es
 A

cc
es

se
d

(b) Overall data scaling.

y = 7x + 8

y = 3x + 5

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800

N (number of atoms)

A
d

d
re

ss
e
s

WaR

RbW

(c) RbW and WaR scaling.

y = 1.43x2 - 35.38x + 239.27

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000

M
il

li
o

n
s

WaR + RbW

I
n

s
tr

u
c
ti

o
n

s
 I

s
s
u

e
d

(d) Operational intensity scal-
ing.

Figure 1. MD instruction and data scaling.

Figure 2. Smith-Waterman scoring matrix parallelisation; this
issue is beyond the scope of this paper, see [8] for more infor-
mation.

tween the host and the ASP, as it is merely internal scratch-space on
the ASP. In fact, recall that the only data reported by the ASP (i.e.
sent toHost) should be the single largest cell value – in other words
we expect that the toHost communications requirements should be
constant, regardless of N. This is reflected in the O(1) scaling of
WaR in plot 3(c). The toASP scaling is O(N); the input required are
the two query sequences of length N. The operational intensity of
the kernel, plot 3(d), tells a similar story to the MD case (plot 1(d)).

2.3 Communicated Scratch-Space

One potential pitfall of this approach is that there is no direct provi-
sion for including the cost of communicating scratch space. This is
poignant because in some situations, it is necessary to pass scratch
space from one part of the program to another, and if a partition
is adopted that requires the transfer of scratch space, the proposed
method must be able to detect this.

Consider a slightly more realistic Smith-Waterman implementation

MECSE-10-2007: "Estimating the communications cost of application accelerator ...", T. Ramdas and G. Egan



y = 157.15x2 - 168.3x - 1719.6

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500

M
il

li
o

n
s

N (number of residues)

In
st

r
u

c
ti

o
n

s 
Is

su
e
d

(a) Instruction scaling.

y = 0.9995x2 + 2.3192x - 35.381

0

50000

100000

150000

200000

250000

300000

0 100 200 300 400 500

N (number of residues)

U
n

iq
u

e 
A

d
d

re
ss

es
 A

cc
es

se
d

(b) Overall data scaling.

y = 3

y = 4x + 5

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600

N (number of residues)

A
d

d
re

ss
e
s

WaR

RbW

(c) RbW and WaR scaling.

y = 9.8211x2 - 197.25x - 1772.4

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000

M
il

li
o

n
s

WaR + RbW

I
n

s
tr

u
c
ti

o
n

s
 I

s
s
u

e
d

(d) Operational intensity scal-
ing.

Figure 3. SW instruction and data scaling. N is the number of
residues in the sequences being compared.

than the one discussed thus far: once the scoring matrix is filled,
traceback must then be performed (see [8] for an explanation of
the complete Smith-Waterman algorithm) in order to identify align-
ments between two query sequences. Generally, traceback entails
traversal over the entire scoring matrix. A possible partition is
to perform the matrix fill operation on the ASP, and traceback on
the host. This would require that the scored matrix be transferred
from the ASP to the host, which is clearly far more expensive in
terms of ASP-host communications than merely reporting the max-
imum similarity score. We would expect that this more thorough
implementation of SW would exhibit poorer performance – specif-
ically, stronger WaR scaling – than the previously obtained results
for “simplified” Smith-Waterman, which is presented in figure 3.

Exposing this expense within the framework of the proposed
methodology is problematic because the memory addresses asso-
ciated with the scored matrix are identified as scratch space. The
general problem at hand is detecting when scratch space may in fact
need to be transferred from the ASP to the host. We shall call this
the “communicated scratch space” (CSS) problem.

Eliminating the possibility of the CSS problem would, in most
cases, be as simple as confirming that the WaR and/or RbW scaling
is equivalent to the unique addresses accessed scaling.

An easy and conservative approach to resolving the CSS problem
would be to abandon the use of the WaR and RbW metrics alto-
gether, and adopt the unique addresses accessed (UqA) metric (fig-
ures 1(b) and 3(b)) as a communications requirement scaling esti-
mate. This approach has the disadvantage that “genuine” scratch
space that is not accessed outside the candidate partition would be
erroneously included in the communications requirements estimate.
Figure 4 compares the functional intensity of SW when UqA and
RbW+WaR are taken as data metrics. The UqA plot is indicative of

y = 9.8211x2

y = 156.29x

0

5

10

15

20

25

30

35

40

45

0 50000 100000 150000 200000 250000 300000

M
il

li
o

n
s

Addresses

I
n

s
tr

u
c
ti

o
n

s
 I

s
s
u

e
d

RbW + WaR

UqA

Figure 4. Operational intensity of SW, adopting UqA as a data
communications estimate, vs. RbW+WaR as a data communi-
cations estimate. The UqA case corresponds to transferring the
O(N2) matrix toHost, while the RbW+WaR case corresponds to
transferring the maximum cell value toHost.

the SW kernel which transfers the entire O(N2) matrix toHost, and
clearly exhibits much lower operational intensity than the originally
discussed (albeit not very useful) SW implementation which only
transferred the maximum matrix cell score toHost, i.e. O(1). 1

A more sophisticated (and less conservative) solution to this prob-
lem may require additional tracing on the program with additional
instrumentation of partitions of interest. Thus far, only tracing of
partitions considered for ASP deployment has been mandated. Ac-
curate CSS resolution may require additional tracing of partitions
not considered for ASP deployment. The specific goal is to identify
if any of the previously identified scratch-space within the ASP
candidate partition is accessed as RbW by subsequent computa-
tions. Specifically looking for RbW accesses to addresses marked
as scratch space would eliminate the possibility that the range of
addresses has been recycled for unrelated scratch-space. Demon-
strating this will be left for future work.

2.4 Other Pitfalls and Limitations

Besides the CSS problem, there are a few other limitations and po-
tential pitfalls with this method:

A key assumption made by this method is that any memory loca-
tions accessed by the candidate partition are modified only by the
candidate partition. If a portion of memory is set up to be shared
between multiple threads of execution, with the candidate partition
contained within thread A, and thread B modified the shared data,
then this method would no longer be applicable.

Complete instruction traces can consume massive amounts of stor-
age; currently, seconds of CPU time tracing could result in trace
file sizes in the order of hundreds of megabytes to gigabytes. Fur-
thermore, the overhead of tracing in terms of wall-clock time can
also be massive. Having said that, trace analysis is very valuable
in understanding computational kernels, and such traces would be

1Ideally, the ASP would also perform traceback, and therefore
toHost communications would scale as O(N) (not shown in this pa-
per), which is clearly poorer than O(1), however this is unavoidable
if a complete SW operation, i.e. including alignment reporting, is
desired.

MECSE-10-2007: "Estimating the communications cost of application accelerator ...", T. Ramdas and G. Egan



Host

ASP

TWOEI

...

TWOEI

...

SHELLQUART

DIRFCK

Figure 5. A potential host/ASP partitioning for GAMESS.

desirable beyond the scope of just this method. In fact, trace files
may already exist, and this method may be applied on these traces.

The robustness of this method relies greatly on the significance of
each and every memory access made by the program. If data ac-
cesses are explicitly made in a manner that do not reflect the ac-
tual computational requirements of the program, for example as
a means to pre-cache data, this could distort the findings of this
method. However, modern processors now have dedicated cache-
specific instructions, which should minimise this specific problem.

3 Applied to GAMESS

The General Atomic and Molecular Electronic Structure System
(GAMESS) has a long history dating back to the 1970s, and is
a very popular FORTRAN 77 numerical package in the quan-
tum chemistry domain. A potential host/ASP partitioning scheme,
which we shall call the GAMESS SD-partition, is depicted in figure
5. The subroutines Shellquart and Dirfck (and all other subroutines
contained therein) will be implemented on the ASP board.

As with the previous MD and SW test cases, a variable N must be
defined for computational quantum chemistry. The most suitable
choice of N for the candidate partition is the number of basis func-
tions involved in the computation. A basis function may be thought
of as a collection of Gaussian primitive functions, and the number
of basis functions in a computation is determined by the number
of atoms in a system, the kind of atoms, the desired accuracy etc.
Here, we fix the number of atoms (in fact we use the same molecule
for all tests – C10H8) and vary the level of accuracy required. The
details are omitted here; suffice to say, with regards to the plots in
figure 6 the term STO 2 is effectively the N, and a larger value of
STO results in a larger number of basis functions. For those fa-
miliar with these computations, the Rys quadrature approach was
used with Direct-SCF. More details will be presented in a future
communication.

Note the very strong computation time scaling in plot 6(a). Al-
though the memory space scaling of the partition in plot 6(b) is also
quite strong, it is not as strong as the time scaling. This is also the
case with RbW and WaR scaling in plot 6(c). Overall, the partition
exhibits a large degree of operational intensity in plot 6(d), regard-
less of whether UqA or RbW+WaR is adopted as data scaling.

Comparing the operational intensity of the GAMESS SD-partition

2Actually, it was the NGAUSS variable that was changed in the
GAMESS input file, while the BASIS variable was fixed at STO.

y = 33263x4 - 416480x3

0.001

1.001

2.001

3.001

4.001

5.001

6.001

7.001

8.001

9.001

2 3 4 5 6

M
il

li
o

n
s

STO

I
n

s
tr

u
c
ti

o
n

s
 I

s
s
u

e
d

(a) Instruction scaling.

y = -0.5x4 + 10x3 - 44x2 + 174x + 843

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2 3 4 5 6

STO

A
d
d
r
e
s
s
e
s

(b) Overall data scaling.

y = 1.1667x3

y =10.458x3 - 75.229x2

0

100

200

300

400

500

600

700

800

900

2 3 4 5 6

STO

A
d
d
r
e
s
s
e
s

WaR

RbW

(c) RbW and WaR scaling.

y = 20.238x2 y = 9.7364x2

0

1

2

3

4

5

6

7

8

9

10

500 1000 1500 2000

M
il

li
o
n

s

Addresses

I
n

s
tr

u
c
ti

o
n

s
 I

s
s
u

e
d

UqA WaR+RbW

(d) Operational intensity scal-
ing.

Figure 6. GAMESS SD-partition instruction and data scaling.

y = 20.238x2

y = 2.9184x2

0

1

2

3

4

5

6

7

8

9

200 400 600 800 1000 1200 1400 1600

M
il

li
o
n

s

Addresses

I
n

s
tr

u
c
ti

o
n

s
 I

s
s
u

e
d

MD Kernel

GAMESS Partition SD

Figure 7. Operational intensity: MD kernel vs GAMESS
Shellquart-Dirfck partition. Conservative (i.e. UqA) data scal-
ing was assumed for the GAMESS SD-partition.

vs. the MD kernel in figure 7, we can see clearly that the GAMESS
SD-partition exhibits a greater operational intensity scaling. This
is quite encouraging with regards to the possible real-world wall-
clock speedup that an ASP may yield for the target application,
assuming of course that it would be possible to construct a high-
performance ASP (which is an especially critical point if FPGAs
are favoured over ASICs) for the candidate partition. Clearly, this
is a critical point, however it is a point that is outside the scope of
this paper.

4 Further Work

The CSS problem described in section 2.3 should be addressed. A
concrete example of how to overcome the problem by performing
additional tracing as was prescribed in section 2.3 should be devel-
oped.

Thus far, a transactional lumped data transfer model has been as-

MECSE-10-2007: "Estimating the communications cost of application accelerator ...", T. Ramdas and G. Egan



sumed. There has been no accounting for the possibility of stag-
gering data transfers over the timeline of the computation. The
memory traces produced retain timing information, i.e. the time
between data accesses (in clock cycles) is recorded. Therefore, it
may be possible to infer the time between consecutive RbW and
WaR accesses, which could be used to depict a gradual data transfer
continuum rather than a single toASP transfer and a single toHost
transfer.

The robustness of this method is affected by, among other things,
compiler optimisations on the profiled kernel. It would be prudent
to consider the impact various compiler optimisations may have on
a candidate kernel that would distort the findings obtained with this
method.

Specifically with regards to the application of the method to
GAMESS, the obvious avenue for future work is the evaluation of
different partitions. While the existing partition exhibits favourable
communications scaling, implementing the entire Shellquart and
Dirfck sub-graph may not be practical in terms of resources and
the level of effort required to design the ASP.

We rely on a general trace extraction tool (see section 5). However,
we are only interested in load/store instructions, and in fact in the
post-trace processing we simply disregard non-load/store instruc-
tions. All instructions would need to be counted, but only load/store
instruction words need to be recorded. Therefore, if we were to de-
velop a more specialised trace extraction tool we would be able to
decrease the storage requirements of the trace files. With one ex-
ample trace, this would have resulted in savings of over 55%.

5 Software Stack

The software stack used to produce the data presented in this paper
include amber and acid, which are part of Apple Computer’s Com-
puter Hardware Understanding Developer (CHUD) toolkit. The
test programs (i.e. the MD kernel, the SW kernel, and GAMESS)
were instrumented with a supervisor assembly instruction that,
when executed in normal user-mode, would result in an illegal in-
struction exception (i.e. SIGILL) and therefore cause the program
to terminate abnormally. However, when the instrumented program
is run with amber, the SIGILL is trapped and triggers the start of
trace collection. The next SIGILL would stop trace collection. The
tracefiles are then pre-processed with acid to extract data addresses
from the tracefile. This output is then processed with a utility de-
veloped to extract the WaR and RbW metrics. This utility may be
obtained from [7].

It should be noted that while we present our methodology on a trace
analysis framework, the methodology itself is immediately portable
to a simulation framework. An existing simulator such as Sim-
pleScalar could be instrumented to count the number of UqA, RbW,
WaR, and instructions executed, and then produce the plots that we
prescribed.

6 Conclusion

We have presented a method for estimating the asymptotic compu-
tation vs. communication behaviour of any arbitrary computational
kernel through instruction and memory address tracing, for the pur-
pose of performing an early evaluation of the viability of deploying
the kernel on an ASP. Through the use of two concrete computa-
tional kernels – molecular dynamics Coulombic force term evalua-
tion, and the Smith-Waterman sequence alignment algorithm – we

have demonstrated the method’s capacity for exposing analytically
expected behaviour. Furthermore, utilising the method, we have
provided initial insight into the feasibility of an ASP for a compu-
tational quantum chemistry application.

The main strength of this method lies in the fact that it allows one
to attack a problem with a stimulus driven approach before an ana-
lytical model is developed and without reliance on particular spec-
ification languages. It is by no means proposed that the method is
a replacement for other analytical approaches. It’s main value is
as a tool to empirically estimate the ability of a prospective ASP
kernel to operate independently of the host, which translates to less
reliance on a high performance host-ASP interconnect. Kernels that
pass this initial test will then be tackled with more formal methods,
and perhaps expressed in proper HW/SW co-design specification
languages.

7 References
[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,

C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki,
and B. Tabbara. Hardware-Software Co-Design of Embedded Sys-
tems: The Polis Approach. Kluwer Academic Publishers, 1997.

[2] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev. 64-bit
floating-point fpga matrix multiplication. In FPGA ’05, pages 86–95,
New York, NY, USA, 2005. ACM Press.

[3] Y. Gu, T. V. Court, and M. C. Herbordt. Accelerating molecular dy-
namics simulations with configurable circuits. In Proceedings of FPL
2005, pages 475–480, 2005.

[4] P. V. Knudsen and J. Madsen. Pace: A dynamic programming algo-
rithm for hardware/software partitioning. In CODES ’96, page 85,
Washington, DC, USA, 1996. IEEE Computer Society.

[5] J. Madsen, J. Grode, P. Knudsen, M. Petersen, and A. Haxthausen.
Lycos: The lyngby cosynthesis system, 1997.

[6] K. Muriki, K. D. Underwood, and R. Sass. Rc-blast: Towards a
portable, cost-effective open source hardware implementation. In Pro-
ceedings of IPDPS, 2005.

[7] T. Ramdas. process trace. http://users.monash.edu.au/˜tramdas/process trace,
2006.

[8] T. Ramdas and G. Egan. A survey of fpgas for acceleration of high
performance computing and their application to computational molec-
ular biology. In Proceedings of IEEE TENCON, 2005.

[9] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gor-
don, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su,
theresa L. Windus, M. Dupuis, and J. A. M. Jr. General atomic
and molecular electronic structure system. Journal of Computational
Chemistry, 14(11):1347–1363, 1993.

[10] S. Swan. An Introduction to System Level Modeling in SystemC 2.0,
2001.

[11] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada,
and A. Konagaya. Protein explorer: A petaflops special-purpose com-
puter system for molecular dynamics simulation. In Proceedings of
Supercomputing 2003, 2003.

[12] R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation: a
survey. ACM Comput. Surv., 29(2):128–170, 1997.

[13] G. Vanmeerbeeck, P. Schaumont, S. Vernalde, M. Engels, and
I. Bolsens. Hardware/software partitioning of embedded system in
ocapi-xl. In CODES ’01, pages 30–35, New York, NY, USA, 2001.
ACM Press.

MECSE-10-2007: "Estimating the communications cost of application accelerator ...", T. Ramdas and G. Egan


