Department of Electrical
and
Computer Systems Engineering

Technical Report
MECSE-27-2006

An Unmanned Aerial Vehicle Autopilot

G.K. Egan and R.J. Cooper

MECSE-27-2006: "An Unmanned Aerial Vehicle Autopilot”, G.K. Egan and R.J. Cooper

An Unmanned Aerial Vehicle Autopilot

G.K. Egan and R.J. Cooper
Department of Electrical & Computer Systems Engineering
Monash University 3800
Melbourne, Australia

Abstract—this paper outlines the functions of a small
unmanned aerial vehicle (SUAV) autopilot, intended for
civil applications outside civilian airspace, and some of
the design considerations.

Index Terms— autopilot, small unmanned aerial
vehicle, SUAV, civilian airspace.

I. INTRODUCTION

OR SUAVs to have wide use will require safe
Foperation by relatively inexperienced operators.
These are now also the attributes of the next generation of
recreational almost ready to fly (ARTF) model aircraft.
The days of a careful apprenticeship of construction of
aircraft under the guidance of a skilled model aircraft
constructor followed by a long period of flight training
punctuated by expensive crashes are now largely over
except for those aspiring to the highest levels of this
sport, and even they crash sometimes. ARTF aircraft are
widely available, inexpensive, and can be flown with
some success within minutes.

It is our expectation that most model aircraft will,
within a year or two, come equipped with integrated
autopilots, including GPS navigation (return to origin),
and spread spectrum communications if only to ensure
safe use of recreational aircraft by unskilled pilots -
"litigation mitigation" if you will. These features will
serve to contain aircraft to designated safe flying spaces
and return them to the vicinity of the pilot should they
for any reason stray out of radio range.

The autopilot to be described briefly here has
anticipated many of the characteristics above, which we
expect to become commonplace. The core functions of
the autopilot have been flown successfully for several
years. The target applications for the autopilot are civilian
below or outside normal civilian airspace that is the space
accepted for the operation of recreational model aircraft.

I. RESEARCH AIRCRAFT

We operate a number of medium endurance (~2Hours)
electrically powered research SUAVs in the 2-5Kg class
with payloads to 1.5Kg. These endurances are without
recourse to environmental energy sources discussed later
in the report. Particular attention has been placed on
flight safety including flight termination systems [1] that
limit aircraft kinetic energy on landing.

Minimising mass is of vital importance in aircraft
design if reasonable performance, including endurance, is

to be achieved. As an example, the mass of one of our
SUAVs P16025 (Fig. 1) [2] empty is 2.2Kg with a
typical payload of 1Kg. A significant part of the airframe
mass is committed to batteries which for most missions
is 0.7Kg. The power required to maintain this aircraft
with full payload in cruising flight at 54Km/H is
approximately 28W.

Figure 1: The P Series Aircraft.

TABLE 1
SPECIFICATIONS OF AIRCRAFT P16025
Span 160 cm Motor B4021L 5:1 13x11
Chord 25 cm Duration 60-90 minutes
Length 106 cm Speed 30-135 KpH
Controls Elevon Battery 24x1200mAH LiP

Weight 22t03.2Kg Autopilot Non-inertial

We have also tested our autopilot on a number of
airframes usually associated with the model aircraft
fraternity of which we are also members. For many civil
applications including those in primary industry and
emergency services it is expected that the airframes will
often need to be regarded as disposable items given the
wear and tear they are likely to sustain. Current ARTF
aircraft offer this prospect as they continue to fall in cost
and adopt improved aerodynamic sophistication and crash
survivability. The Multiplex EasyStar ARTF aircraft [3]
capable of carrying our normal video telemetry systems
has been flown using the autopilot.

Figure 2: Multiplex MicroJet

MECSE-27-2006: "An Unmanned Aerial Vehicle Autopilot”, G.K. Egan and R.J. Cooper

The Paparazzi Group at the Ecole Nationale de
I'Aviation Civile [4], basing their autopilot developments
in part on our own work [5] have successfully flown
aircraft as light as the Multiplex MicroJet (Fig. 2) which
has a mass of 450gm + avionics.

A reasonable target for the additional avionics, over
and above that required for simple radio control (RC), to
support full autonomy including GPS antenna and video
telemetry would be 50-75gm. In simple terms the mass
of the avionics should be of the order required for small a
GPS equipped cell-phone without case or batteries.

Model aircraft, and other commodity off the self
(COTS) equipment are now widely used by the research
community although there was some initial reticence and
perhaps illogical need by researchers to build everything.
Researchers flying model aircraft are often identified as
simply having fun — which they generally are!

I. AUTOPILOT GENERAL OPERATION

Our autopilots are designed to support flight by one
person in clear conditions outside of civilian airspace.
The operator requires only minimal training (less than an
hour) to operate an aircraft assuming its airframe
configuration is chosen for intrinsically stable flight
behavior. By this we mean that the aircraft will restore
itself to normal trimmed flight when disturbed given
sufficient time and altitude.

Operators may fly the aircraft in computer-assisted
mode when the aircraft is within sight. If they lose sight
of the aircraft the aircraft will return to the takeoff point
and orbit at a safe altitude.

For missions outside visual range the aircraft’s course
is programmed in a manner no more complicated than
programming a GPS for a cross-country trip. Most GPS
units have associated trip planning and display tools, for
example Garmin’s MapSource [6].

The autopilot program is written entirely in C with the
most usual aircraft configuration yielding 3200 lines of
source. The source library comprises 11000 lines of
source.

A. Flight conditions

The missions of interest to us usually involve
photoreconnaissance at low altitude and are therefore
applicable to Visual Flight Rules (VFR). Under VFR
conditions the horizon remains visible or substantially
visible at all times.

We fly outside civilian airspace by which we mean
airspace that is open to model aircraft as specified by the
Australian Civil Aviation Safety Authority (CASA)
under CASR 101 [7]. It is worth noting here that the
Model Aircraft Association of Australia (MAAA)
currently prohibits the use of GPS based navigation
systems in model aircraft although it does permit free-
flight and flight stabilization in the form of gyros and
various forms of wing levelers. With free-flight the
aircraft is simply launched and will land where it will
after a period of time. In Australia model aircraft airspace
is away from built-up areas and airfields and usually
below 125M altitude. Our autopilots currently have no

see and avoid capability.

A. Aircraft setup

Aircraft setup assumes that the aircraft has completed
its commissioning flights. Other than a full briefing on
safety issues, mainly relating to the danger of the
propellor, there is no aircraft setup required.

If payloads are changed then the centre of gravity of the
aircraft may need to be rechecked. In practice this
requires ensuring that the aircraft will balance around
clearly marked points on the wing, or in some cases, the
fuselage.

A. Operator Control

Currently we use only three channels on a conventional
RC transmitter for aircraft control. This will be replaced
in due course by a spread—spectrum transceiver most
likely with a simple game style hand controller or PDA,
the sophistication of current RC transmitters is not
required or compatible with two way telemetry.

Our autopilots have three operating modes:

* manual control;
* computer-assisted control;
¢ autonomous.

We are able to use other RC channels as required for
manual payload control in manual and computer-assisted
control modes.

1) Manual control

In this mode the RC transmitter’s commands are
relayed through the autopilot to the control surface servos
and the motor control. This mode is normally used only
as a failsafe for testing purposes. The autopilot does not
limit the aircraft’s pitch or roll angle in any way, but
does provide mixing of the transmitter’s controls to
maintain consistency with the other control modes.

1) Computer-assisted Control

In computer-assisted control mode the autopilot will
maintain the aircraft at the desired altitude and a bank
angle appropriate to the desired turn rate. Advancing the
throttle control beyond its mid-point increases the desired
altitude. Moving the throttle below mid-point reduces
the desired altitude setting. The increase or decrease in
desired altitude is relative to the current altitude and is
scaled to the aircraft’s nominal climb rate.

The aileron control is used to select a desired turn rate.
If the control is centred the aircraft will maintain its
current heading. The bank angle is limited to an
appropriate maximum at all times, typically 30°.

Takeoff can be commanded by simply advancing the
throttle. The autopilot then maintains the aircraft heading
and a nominal climb rate.

1) Autonomous

The aircraft is entirely under the control of the
autopilot. This mode is selected explicitly using the RC
transmitter. If the RC signal is lost the aircraft will
follow its mission. If no mission is programmed it will
return to the takeoff point and orbit at a safe altitude.

I. FLIGHT CONTROL SYSTEM

The flight control system (FCS) is configured from an

MECSE-27-2006: "An Unmanned Aerial Vehicle Autopilot”, G.K. Egan and R.J. Cooper

aircraft specific configuration file. Some initial
parameters are tuned further during flight. An example of
a configuration files is given in the appendices. This file
may be generated using a simply GUI with associated
consistency checks on the desired configuration.

The autopilot reconfigures depending on the sensors
available to it. In principle it will still provide some
computer-assisted control without any sensors at all, or at
least control sufficient for failsafe landings. The
minimum practical set of sensors required are those for
the control of attitude. Primary configuration of the
autopilot occurs when the autopilot program is compiled.

In what follows we will assume the aircraft is being
flown in autonomous mode. As will be seen a substantial
proportion of the autopilot program is devoted to
heuristics or rules conditioning the relatively small
amount of program devoted to conventional control.
These heuristics are derived in part from considerable
experience in flying model aircraft.

A. Airspeed and altitude determination

Conventional pressure sensors are used to determine
airspeed and density altitude. GPS data is used to
provide a sanity check for altitude values provided
sufficient satellites are visible. GPS groundspeed as will
be seen later is used in conjunction with airspeed to
estimate wind vectors.

A. Attitude determination

In our work we take advantage of the VFR conditions
to obtain absolute determination of aircraft attitude using
Infrared sensors (IR) rather than the more common inertial
reference systems (INR) [8, 9]. This significantly reduces
the computational load of the autopilot over that required
for INR based control. We are also investigating the use
of video cameras to directly determine aircraft attitude
[10].

Clouds and rising terrain can cause incorrect pitch and
roll values. In almost all cases this is safe as the FCS
will roll and/or pitch the aircraft away from the cloud or
terrain.

A. Heading determination

For our current implementations we have included a
heading gyro to hold heading between GPS updates. As
our airframes are, for the most part, intrinsically stable
the yaw gyro along with the airspeed and barometric
altitude sensors may be used to identify inconsistencies.

In simplified terms if the IR sensors determine the
aircraft is level but in fact the aircraft is rolling away from
a cloud significant heading changes and yaw rates will be
detected. If the airspeed is increasing faster than throttle
settings and other factors dictate, then the IR pitch sensor
may have failed.

These situations are relatively easy to detect permitting
a degree of data fusion within our onboard computational
constraints — we do not currently use Kalman Filtering.

The ultimate fall back is to take all control surfaces to
trim position, close throttle, and initiate failsafe.

A. Control system tuning

The time taken to tune typical commercial autopilots

for a particular payload and airframe configuration is
quoted as requiring several days of trial and error tuning
to obtain satisfactory performance. Our own experience
with one autopilot [11] confirms this. In practice of
course, careful design of airframe and payload location
can result in tuning parameters close to acceptable
requiring only modest re-tuning with different payloads.
Nonetheless the tuning process, be it through flight-
testing or by simulation [12], requires considerable
knowledge and experience in flying model aircraft.

Some of the less expensive autopilots claim minimal
tuning requirements; we have not yet had the opportunity
to verify the operation of these when used in conjunction
with aircraft in the category of interest to us. In a number
of cases these autopilots are a simple combination of
aircraft-levellers with rudder/aileron control controlled by
the cross track error of an associated GPS unit. As such
heading is controlled by yawing the aircraft rather than
through a properly coordinated turn. We favour adoption
of well-understood, often empirical, design of the
airframes coupled with automatic in-flight tuning of the
FCS.

While sophisticated model identification systems can
be used, to date we have found the older well understood
but not necessarily optimum techniques, in our case
Ziegler-Nichols (ZN) to be adequate. This has been used
in the support of our camera based attitude control
research [10][13]. As our aircraft are predominantly
electrically powered, difficulties related to changing mass
and associated inertial response do not need to be
considered. We have found varying control gains based
on airspeed, as a replacement for explicit gain scheduling,
to provide acceptable performance. We are however
testing in-flight model identification and tuning schemes
[14].

The tuning procedure for new aircraft involves
manually controlling the aircraft in sharp pitch and bank
excursions. The aircraft samples the input control
demand (approximating to a step function) and
determines the PID constants using the well-understood
formulae due to ZN. In practice we usually identify for
only PI control.

A. Flight modes

Unlike more conventional autopilots we do not have
distinct autopilot modes differentiating climb, hold,
descent etc. We use instead a set of heuristics overlaying
more traditional control strategies.

1) Airspeed

The aircraft’s default airspeed is usually the best ratio
of lift to drag (L/D) to maximize time aloft for given
energy. This is qualified, however, by the desired time of
arrival at the next waypoint in which case the desired
airspeed may be increased.

The default control for airspeed is through airspeed-
from-pitch. The alternative of controlling airspeed-from-
throttle with altitude-from-pitch is not appropriate for
aircraft which glide for a significant part of their mission.
The effect of using airspeed-from-throttle and increasing
pitch in an attempt to increase altitude when battery
power is exhausted is rather obvious.

If no airspeed sensor is available, or it becomes

MECSE-27-2006: "An Unmanned Aerial Vehicle Autopilot”, G.K. Egan and R.J. Cooper

unavailable, the FCS maintains best L/D pitch for the
aircraft using the attitude sensors and adopts an altitude-
from-throttle strategy. Loss of airspeed and altitude
sensor information can occur when the pitot or static
tubes become blocked by for example water droplets or
ice.
1) Altitude Hold

As may be seen from the following AltitudeHold
function there is a significant amount of program logic
conditioning the control loops including the use of
propeller induced drag to aid descent should the aircraft
stray above the current altitude hold band usually due to
environmental lift.

Note also that if altitude data is not available due to
say sensor failure then the throttle is closed.

void AltitudeHold()
{ // Throttle controls Altitude
int16 Temp;

if (Lev.F.UseAltitude)

{
Temp=DoPID(AltitudeV)+CruiseThrottle;
Lev.F.PropellorDragOn=((Lev.V[AltitudeV].Error
<(-AltitudeHoldBand*2))&&PropellorDragEnabled);
if (Lev.F.PropellorDragOn)
Temp=Limit(Temp, DescentThrottle, CurrMaxThrottle);
Lev.Controls[ThrottleC]=ConstrainThrottle(Temp);

}

else
Lev.Controls[ThrottleC]=0;

Lev.F.Gliding=((Lev.V[AltitudeV].Error<=0)
&&(Lev.Controls[ThrottleC]<ThrottleCutout));

}

If the aircraft is a powered glider then we have found it
to be more efficient for the aircraft to climb at the most
efficient power setting to the upper limit of the altitude
hold band then to power down completely until the
aircraft falls through the lower limit.

1) Heading

Heading is in general controlled by banking the aircraft
within its maximum bank window as set by the aircraft
configuration file.

The GPS used provides heading updates at one-second
intervals. Some GPS units provide higher update rates
but often these are provided by an internal extrapolation
calculation. In our case a yaw gyro is used to extrapolate
heading estimates from the current and previous yaw rate
samples every 22.5mS.

Most of our aircraft have elevon (combined elevator
and aileron) control only and so fine-tuning of heading
from rudder is not available. Ailerons/elevons are
controlled independently allowing control of adverse yaw.
The yaw gyro may be used to condition this in more
advanced control schemes [14] but for most aircraft this is
not necessary. Where a rudder is available it is usually
coupled simply to the aileron/elevon control. Feed
forward control is used to apply up elevator offset in
turns.

1) Takeoff

The aircraft is deemed to have been launched if
autonomous mode is engaged, the desired altitude
exceeds the origin altitude and the aircraft has not reached
flying speed for the first time and the altitude has not

increased to some threshold above launch.

The desired altitude is set by the navigation system
and will be that of the first waypoint or the failsafe return
to origin setting if no mission plan is loaded.

The autopilot maintains a climb pitch, airspeed and the
heading at launch until the launch altitude threshold is
reached. Once the altitude threshold is reached the
navigation system is enabled and other controls including
spoilers, flaps, parachute etc are armed. If the navigation
system has no mission loaded the aircraft will continue to
climb to safe altitude and orbit the launch point.

1) Landing

If the current altitude is below the Approach Altitude
and the desired altitude is below the current altitude or
there is a Ground Proximity Alarm (as set by an
ultrasonic or infrared detector) the aircraft is deemed to be
landing. If the Proximity Alarm is not yet set flaps are
deployed. When the Proximity Alarm is set the spoilers
are also deployed, the flaps raised and the aircraft flares
by maintaining distance from the ground using the
proximity detector.

The program fragment that controls the landing
sequence and also limits maximum altitude (excluding
the thermal escape functions) is shown below:

void CheckAltitudeBoundaries()
{ // call to this function must immediately precede call to PitchHold
int16 AboveAltLimit, Temp, RelAltitude;

RelAltitude=Lev.V[AltitudeV].Current-OriginAltitude;

Lev.F.Flying=Lev.F Flying||(RelAltitude>AllArmingAltitude);

Lev.F.Landing=Lev.F Flying
&&(RelAltitude<ApproachAltitude)

&&((Lev.V[AltitudeV].Error<0)||Lev.F.GroundProximityAlarm);

AboveAltLimit=RelAltitude-CurrMaxAltitude;
Lev.F.AltitudeAlarm=(AboveAltLimit>0);

if (Lev.F.AltitudeAlarm)
{
Temp=(Limit(AboveAltLimit, 0, AltitudeHoldBand)*
MaxSpoilerServoThrow)/AltitudeHoldBand;
SlewControls(SpoilersC, Temp, 1);
}

else
if (Lev.F.Landing)

{
if (Lev.F.GroundProximityAlarm)
f

i

Lev.F.ThrottleArmed=false;

SlewControls(SpoilersC, MaxSpoilerServoThrow, 1);

SlewControls(FlapsC, MinFlapServoThrow, -1);

Temp=BestPitch+((MaxCLPitch-
BestPitch)*(LandingFlareAltitude-
Lev.GroundProximity))/LandingFlareAltitude;

Temp=Limit(Temp, BestPitch, MaxCLPitch);

UpdateVarDesired(PitchV, Temp);

}

else

{
SlewControls(FlapsC, MaxFlapServoThrow, 1);

SlewControls(SpoilersC, MaxSpoilerServoThrow, 1);

}
h

else
ResetFlapsAndSpoilers();

}

A. Use of integers

Numerical computations within the autopilot are
integer based. Integer or fixed-point computations are
used commonly for embedded applications because of

MECSE-27-2006: "An Unmanned Aerial Vehicle Autopilot”, G.K. Egan and R.J. Cooper

their energy efficiency and lower computation time
compared with floating-point computations even when
using dedicated floating-point hardware.

Two’s complement integer arithmetic has the
unfortunate characteristic of large positive numbers
overflowing to large negative numbers if their range is
exceeded. In an aircraft this can lead to full down-
elevator being commanded when the aircraft is in fact
asking for more than full up-elevator when recovering
from a dive!

So called saturation arithmetic, which has been used
for some time in graphics pipelines of mainstream
processors (Pentium MMX and PowerPC Altivec) is now
appearing in processors intended for embedded
applications (Arm, Microchip DSP). With saturation
arithmetic the largest maximum (or minimum) number is
generated depending on the sign of the operands'. Some
synthesis approaches suitable for FPGA implementations
soften the saturation as the result approaches a maximum
magnitude [15].

This still leaves the problem of scaling the variables in
the calculation such that sufficient precision is maintained
over several operations in the calculation of control
surface settings. A naive approach is to track the
maximum and minimum possible values of the variables
in the computation and scale accordingly. This usually
leads to overly conservative scaling and insufficient
precision. Another technique is to use floating-point
numbers initially and run extensive simulations to
determine the range required for intermediate values.
Without hardware supported saturation arithmetic or C
saturation arithmetic class libraries in the final
implementation this can lead to disasters with the one set
of values not covered in the simulation resulting in ‘full
down-elevator’! It may be observed that many of the
techniques for dealing with these problems were
developed for analog computers and have been partially
lost over time or are at least outside Google’s view!

For our autopilot we chose to scale variables to permit
sufficient precision for fine control while explicitly
clipping the larger excursions using a Limit Function
seen frequently in the program fragments here. This was
done such that maximum control surface actuation
remained available.

I. NAVIGATION

The navigation system is 4D providing the ability to
arrive at waypoints at a designated time (if feasible). It
uses a simple waypoint list, with optional cycles, to
define the mission. Each waypoint carries the desired
coordinates, altitude, target arrival time and payload
(camera) commands.

Routes are generated using MapSource and further
annotated with payload control information and waypoint
target arrival times.

The navigation system also tracks some environmental
factors likely to affect missions. When the aircraft is
gliding the GPS groundspeed and heading information is
used to estimate windspeed and direction. Rate of Climb

" We exclude here a discussion of modulus arithmetic applicable to
two’s complement representations.

is also monitored and used to map regions of rising or
falling air (lift and sink) due to thermals and wind driven
air masses moving upwards over rising ground. Ageing
is used to decay values to a small nominal sink value of
—1MS" over time.

A. Waypoint approach strategies

There are a number of approach strategies for acquiring
waypoints that include those where the aircraft must pass:

* through the waypoint within a defined ellipsoid
(aircraft will persistently turn and climb/descend
until it is within the arrival ellipsoid);

* through waypoint ground coordinates at any
altitude above that specified (aircraft is
maximizing lift use and will circle the waypoint
until it is within the arrival circle);

* as close as possible with no go-around used
mainly for landings and takeoffs (aircraft selects
next waypoint when crossing line perpendicular to
the desired track passing through the current
waypoint);

Waypoint approaches usually attempt tangential arrival
on the side away from the next waypoint permitting
smoother turn transitions. Turns are always in the
direction of minimum heading error. Of course if the
waypoints are in a straight line as in landing the aircraft
will fly directly through the waypoint coordinates (if
possible).

Arrival ellipsoids and circles are dimensioned so as to
be achievable with the aircraft’s turn rate.

A. Containment

It is necessary to contain the aircraft within some
operating area when in autonomous flight and often when
in computer-assisted flight. For example an aircraft when
accidentally, or deliberately flown outside a safe area
should override manual or autonomous control and stay
within the safe area. In most cases the safe volume may
be inferred by the mission route but not always as the
mission if not checked properly may stray into prohibited
airspace.

The containment volumes may of course become very
complex for some missions traps that an aircraft cannot
escape if flown into. Obviously we must take into
account the maneuvering capability of the particular
aircraft and adjust the containment volumes to ensure the
actual prohibited areas are not encroached. Unlike
terrestrial robots that often may turn conveniently on their
vertical axis, aircraft, other than helicopters cannot.
Containment space feasibility is the subject of future
work under mission planning.

The simplest (default) volume for our autopilot is a
cylinder of some radius from the launch point with an
absolute altitude limit. Under default conditions the
aircraft will return to the takeoff point if it crosses the
containment radius. Breaches of the altitude boundary
engage the altitude limiting strategies previously
outlined.

The now widespread use of GPS systems for vehicle
navigation is leading to increasing sophistication in the

MECSE-27-2006: "An Unmanned Aerial Vehicle Autopilot”, G.K. Egan and R.J. Cooper

information, including real-time data (traffic flows). GIS
databases are being used to augment 3D views (building
heights, vegetation etc) for 3D displays. We expect
airspace classifications are already included in these
databases making containment planning much simpler.
For recreational flyers park boundaries including internal
use classifications allow, or will allow, containment
planning to be automatic when the aircraft is switched on.

A. Failsafes

There are two failsafe regimes. One is externally
triggered either deliberately or by loss of radio
communications. The circuits supporting this are
independent of the Autopilot.

The second failsafe regime is initiated by the Autopilot
specifically the core FCS.

1) Externally triggered

The prospect of runaway aircraft is quite real and as a
consequence we have placed considerable emphasis on
implementing and testing our failsafe strategies.

The pilot at all times has over-riding direct RC of our
aircraft. If valid RC signals are lost for a period (2.55) a
braking parachute is released to contain the kinetic energy
of the aircraft by limiting its airspeed to just above stall.
Release of the parachute physically cuts power to the
propulsion system.

The intention is not to lower the aircraft intact to the
ground but to prevent potential runaway as some of our
aircraft can comfortably exceed 50MS™' and possibly
double this in a full power dive before probable aircraft
breakup.

For longer-range missions, which are outside normal
RC range, the failsafe is triggered by loss of a low power
VHEF beacon signal. If no beacon is present then loss of
RC signal triggers failsafe otherwise the Autopilot
assumes autonomous control.

The monitoring of RC and beacon signal integrity is
entirely independent of the FCS although the FCS can
also trigger, but not override, failsafe.

1) FCS triggered

For the FCS itself there is a hierarchy of failsafe
decisions leading ultimately to flight termination. This is
described by changes to the FCS state. If a particular
failsafe state persists for a timeout-period then the state
machine moves to a new state triggering some action.
‘Navigating’ is the default state. If GPS signals are lost
then the state is changed to ‘Continuing’ where the
aircraft continues on the current heading (as determined
by zero yaw) and altitude. ‘Continuing’ is designed to
bridge over a few GPS signal losses. If GPS is not
recovered then the state becomes ‘HoldCourse’ where the
aircraft climbs (or descends) to the failsafe altitude
followed by ‘Orbiting” where the aircraft adopts a
maximum turn rate at constant altitude followed by
‘Terminating’ with throttle off, full spoilers/flaps.

If the altitude continues to increase, usually because of
thermal or ridge lift, the aircraft continues on the current
heading for a period and then resumes the descent orbit. If
the altitude still does not decrease the process is repeated
this time in a different heading.

The parachute is deployed once the aircraft descends to
a low altitude to minimize wind drift. Deployment

altitude is such that an aircraft that is traveling at high
velocity will be slowed to acceptable velocities prior to
impact. The ‘Terminating’ state cannot be exited by
recovery of GPS signals.

A fragment of the FCS failsafe program function is
shown below:

void UpdateLevMode()

switch (Lev.Mode) {
case Navigating:
f

1
if (ClockSeconds>=AbortTimeOut)

{
AbortTimeOut=ClockSeconds+AbortContinueTime;
Lev.Mode=Continue;
}
break;
}
case Continue:
{
// stop any turn
UpdateVarDesired(HeadingV, Lev.V[HeadingV].Current);
// hold altitude
UpdateVarDesired(AltitudeV, Lev.V[AltitudeV].Current);

if (ClockSeconds>=AbortTimeOut)

{
AbortTimeOut=ClockSeconds+AbortHoldTime;
Lev.Mode=HoldCourse;

}
break;

case HoldCourse:

{
if (ClockSeconds>=AbortTimeOut)
{
UpdateVarDesired(AltitudeV, DefaultAltitude+OriginAltitude);
AbortTimeOut=ClockSeconds+AbortOrbitTime;
Lev.Mode=Orbiting;
}
break;
}
case Orbiting:
{
// do orbit
UpdateVarDesired(HeadingV, Lev.V[HeadingV].Current+
TurnFlare/2);
ContinueAbort();
if (ClockSeconds>=AbortTimeOut)
{
Lev.F.FullSpoilers=true;
Lev.F.FullFlaps=true;
UpdateVarDesired(AltitudeV, -MaxAllowedAltitude);
AbortEntryAltitude=Lev.V[AltitudeV].Current;
Lev.Mode=Terminating;
}
break;
}
case Terminating:
default:
f

1

ContinueAbort();

if (Lev.V[AltitudeV].Current>
(AbortEntryAltitude+AltitudeHoldBand))

// fly straight to attempt thermal exit
UpdateVarDesired(HeadingV, Lev.V[HeadingV].Current);
AbortTimeOut=ClockSeconds+AbortThermal Time;
Lev.Mode=EscapeThermal;
h
break;
i
}
5

A. Flight extension and mission planning

This is an entire report in its own right. In short we
have a number of opportunities to augment or extend

MECSE-27-2006: "An Unmanned Aerial Vehicle Autopilot”, G.K. Egan and R.J. Cooper

flight duration. To do this mission plans need to be
sufficiently flexible and framed so that the autopilot can
take advantage of naturally occurring energy sources
autonomously.

For SUAVs there is considerable opportunity to
exploit naturally occurring lift and hopefully to avoid
sink although as we have seen it may be necessary to
escape lift, particularly thermals, in some circumstances.

In some cases the desired arrival time at the next
waypoint may be relaxed such that the aircraft can take
advantage of thermal and ridge lift to save power. For
littoral missions we only have to observe birds ferry
gliding along coastal dunes or cliffs to see the
opportunities for extended patrol missions. The use of
environmental lift for flight extension, including our own
preliminary work [16] is seeing greater interest.

We are currently commissioning an in-flight solar
recharging system for the flight batteries of our aircraft.
Our initial computations indicate that the flight times of
our main research aircraft, even with their relatively small
wing areas, may be extended by a few hours.

1. AvVIONICS POWER CONSUMPTION

A target mass of 50-75gm for avionics places
constraints on the architecture and physical manifestation
of the autopilot and associated sensors and control
actuators.

The power budget for computation to navigate and
control flight should ideally be less than 5% of the
aircraft’s cruise power consumption that in the case of the
P16025 would be 1.2W; this is difficult to achieve.

A. Control surface actuation

The total power consumption for the two elevon servos
on the P16025 averages approximately 0.6W with a peak
of 1.6W in turbulent air with a normal update interval of
22.5mS. This already exceeds our budget.

To reduce power consumption in relatively still air we
can lengthen the update interval or simply turn the servo
power off, relying only on its mechanical holding torque.

A. GPS and other sensors

The Trimble SQ GPS receiver power consumption is
100mW. The balance of the sensors use an additional
30mW.

A. Computation

For larger aircraft the weight of wiring can quickly
exceed the weight of the electronics being connected. For
SUAVs the situation is not as clear given their smaller
dimensions.

Distributed architectures, with processors using CAN
Bus as the interconnecting network, have now become
well established in the automotive industry. They are also
being used in larger UAVs such as the Mark 4 Aerosonde
developed in conjunction with our university. The
principal drivers are wiring weight and modular
development.

For smaller SUAVs such as those based on the ARTF
MicroJet [3] it seems clear that the avionics will be
integrated into a single package including sensors, GPS
and data transceiver.

We ultimately chose to use a multiprocessor
architecture based on two programmable interface
controllers or PICs (Microchip 18F8722). The latest
version of the autopilot has the PICs, altitude and
airspeed sensors, GPS and yaw gyro tightly integrated.
The choice of a PIC implementation was driven as much
by curiosity as to their capability and the fact that they
were in use in our teaching programs. The code/data space
for the navigation and telemetry PIC is 12K/1K bytes and
for the FCS PIC 13K/800 bytes.

Future versions of the autopilot will use a high-
performance processor with adequate memory for
navigation, telemetry and extended mission planning
capability. Developers of processors for embedded control
and telemetry applications have been aggressive in
implementing power conservation schemes. By using
short bursts of computation as required and then sleeping
it is likely that the overall power consumption will be
less than that for the PIC implementation.

A dedicated processor, or possibly a field
programmable gate array (FPGA), will continue to be
used for the core functions of the FCS although the
principal strengths of current FPGAs lie more in high
performance image processing pipelines [10].

The autopilot is highly modular, written in C, and
already runs on a variety of platforms including
workstations and so we foresee little if any difficulty in
porting to a new processor architecture.

I. TELEMETRY

The autopilot transmits all of its internal state
variables and flags to the ground once per second. Each
major data structure in the program is sent as a separate
tagged packet. The information transmitted is too large
to document here and can be best seen in the data
structure definitions in the appendices.

A simple pocket sized groundstation, which displays a
small subset of the telemetry data, has proved invaluable
and extremely practical for field trials. Telemetry data for
most trials is recorded and may be monitored in real-time
or replayed using a visualization tool [17].

I. CLOSING REMARKS

There are many elements of our autopilot that have not
been detailed here. We hope however that some flavour
of what we have developed emerges. We have found our
autopilots to be practical in use after several years of
flying and we believe they have a number of
characteristics, particularly those relating to ease of use
and safety, that will become commonplace.

There is a rapid increase in civilian applications of
UAVs and the somewhat more practical and affordable
SUAVs. We expect the use of SUAVs will expand
quickly when it can be shown they can be flown safely
outside of normal civilian airspace.

ACKNOWLEDGMENT

We wish to thank the members of the Aerobotics
Research Group at Monash University [2], and in
particular Ian Reynolds and Paul Jenkins, for their
assistance with fabrication and in testing the various

MECSE-27-2006: "An Unmanned Aerial Vehicle Autopilot”, G.K. Egan and R.J. Cooper

revisions of the autopilot, and Professor John Bird who
prompted the use of IR based flight control in 2001.

REFERENCES

[1] Egan, G.K., Cooper, R.J., and Taylor, B., Unmanned Aerial
Vehicle Research at Monash University, AIAC-11 Eleventh
Australian International Aerospace Congress, February, 2005
also as MECSE-15-2006, Department of Electrical & Computer
Systems Engineering, Monash University, 2006.

[2] Monash University Aerobotics Group,
http://www.ctie.monash.edu.au/hargrave/aerobotics.html

[3] Multiplex Modellsport gmbH, http://www.multiplex-rc.de/

[4] The Paparazzi Project at ENAC,
http://www.recherche.enac.fr/paparazzi/

[5] Taylor, B., Bil, C., Watkins, S., and Egan, G.K., Horizon Sensing
Attitude Stabilisation: A VMC Autopilot, 18™ International UAV
Systems Conference, Bristol, England, Mar 2003.

[6] Garmin Mapsource, http://www.garmin.com/cartography/

[7]1 Civil Aviation Safety Regulations 1998 (CASR) Part 101, Office
of the Legal Counsel, Civil Aviation Authority, 1st Edition,
January 2003.

[8] Egan, G.K., The Use of Infrared Sensors for Absolute Attitude
Determination of Unmanned Aerial Vehicles, MECSE-22-2006,
Department of Electrical & Computer Systems Engineering,
Monash University, 2006.

[9] Herrmann, P., Bil, C., Watkins, S., and Taylor, Simulation and
Flight Test of a Temperature Sensing Stabilisation System’, 19"
International UAV Systems Conference, Bristol, England, Mar
2004

[10] Cornall, T.D., Egan, G.K. and Price, A., Aircraft attitude
estimation from horizon video, IEE, Electronics Letters, Volume
42, Issue 13, p. 744-745, 22 June 2006.

[11] Micropilot MP2028 Installation and Operation, MicroPilot, Stony
Mountain, Manitoba, Canada, October 2003.
http://www.micropilot.com/

[12] Hardware in the loop simulator for Piccolo avionics, Cloud Cap
Technology, Hood River, Oregon, USA, Sept 2003.,
http://www.cloudcaptech.com/

[13] Cornall, T., ‘Using average sky and ground coordinates to
determine aircraft roll angle and horizon position’, PhD Thesis,
Department of Electrical & Computer Systems Engineering,
Monash University, in preparation.

[14] Liu, M., Egan, G.K., and Yunjian Ge,, Identification of Attitude
Flight Dynamics for An Unconventional UAV, IROS06, Beijing,
2006

[15] Constantinides, G.A., Cheung, P.Y., and Luk, W., Synthesis of
Saturation Arithmetic Architectures, ACM Transactions on
Design Automation of Electronic Systems (TODAES) Volume 8§,
Issue 3, pp 334-354, 2003.

[16] Goodwin, A., Egan, G.K., and Crusca, F., ‘UAV Ridge Soaring
in an Unknown Environment’, MECSE-7-2006, Department of
Electrical & Computer Systems Engineering, Monash University,
2006

[17] Price, E., and Egan, G.K., ‘Real-time UAV Visualisation using a
Flight Simulator’, MECSE-9-2006, Department of Electrical &
Computer Systems Engineering, Monash University, 2006.

Appendices

//******'k*************************************

// UAV Autopilot — P16025 Hacker B40/21L
// 5:1 Maxon 16.5x13 Aeronaut
// Copyright (C) G.K. Egan 2001-2006

//**

const uint8 AircraftID[8]="P16025 ";
// Configuration default - Ailerons,
// Rudder and Elevator

#define ELEVONS

//#define RUDDERELEVATOR

//#define HASFLAPERONS
//#define HASSPOILERONS

#define UseAltimeter true

#define UseAirspeedIndicator false
#define UsePropellorDrag false
#define UseGliderStrategies false
#define UseZAxis false

#define LiP 0
#define NiMH 1
#define NiCad 2

#define BatteryType LiP
#define BatteryCells 9

#define AVIONICSUSESMAINBATTERY

// Throttle and Airspeed

#define MaxThrottle 80 // 13.5x11
#define CruiseThrottle 60 // 16.5x13
#define BestClimbThrottle MaxThrottle
#define ThrottleCutout 5

#define RestartThrottle 7

#define DescentThrottle 10

#define StallAirspeed 82

#define MaxAirspeed 270

#define BestAirspeed 114

#define BestClimbAirspeed (BestAirspeed+10)
#define VNEAirspeed (MaxAirspeed*2)

// Pitch
#define PitchSensorSense (1)

#define MinDragPitchDeg (-2)

#define BestLDPitchDeg 5

#define LaunchPitchDeg 7

#define MaxCLPitchDeg 11

#define MaxFlarePitchDeg MaxCLPitchDeg
#define StallPitchDeg 13

#define MinPitchDeg MinDragPitchDeg
#define MaxManualPitchDeg 45

#define MinManualPitchDeg (-20)

#define StallDescentPitchDeg StallPitchDeg

#define BestClimbPitchDeg 16

// Roll
#define RollSensorSense (1)

#define MaxRollDeg 40
#define MaxManualRollDeg 45

#define AileronRudderCoupling 0
#define AileronDifferential 80
#define AileronElevatorCoupling 20

// heading rate from roll angle

// (%) extrapolation to compensate between
// GPS updates

#define RollToHeading 50

// Servo sense and mechanical throw limits
#define ThrottleServoSense 1

#define MaxAileronServoThrow 40

#define MinAileronServoThrow (-40)
#define LeftAileronServoSense (-1)
#define RightAileronServoSense (-1)

#define ElevatorServoThrow 40
#define LeftElevatorServoSense (-1)
#define RightElevatorServoSense (-1)

#define RudderServoThrow 0
#define RudderServoSense (1)

// Flap and Spoiler settngs below are for

// where there are dedicated control surfaces
// for these functions

#define LeftFlapServoSense (1)

#define RightFlapServoSense (-1)

#define FlapServoSense 1 // for Flap mixer
#define MaxFlapServoThrow (100)

#define MinFlapServoThrow (-100)

#define SpoilerServoSense (1) // always Y
lead

#define MaxSpoilerServoThrow (0)

#define MinSpoilerServoThrow (-0)

#define AuxlServoSense 1
#define MinAuxlServoThrow 0
#define MaxAuxlServoThrow 0

// Control gains
#define DefPitchGain 35
#define DefRollGain 45
// BAbort strategy

MECSE-27-2006: "An Unmanned Aerial Vehicle Autopilot”, G.K. Egan and R.J. Cooper

#define DefHardAbort false
#define HasParachute true

//**

// UAV Autopilot — Data Structures
// Copyright (C) G.K. Egan 2001-2006

//**

typedef struct {
uint8 BadAlmanac:1;
uint8 NORTC:1;
uint8 NoAntenna:1;
uint8 NoBattery:1;

uint8 No3DFix:1;
uint8 Mode2D:1;
uint8 Mode3D:1;
uint8 Fault:1;

} TrimbleFlags;

typedef struct {
uint8 DGPSMode;
uint8 Status;
TrimbleFlags F;
} TrimbleState;

typedef struct {intlé Current, Desired, Error,
IntError;} VarRec ;

typedef struct {
uint8 UseAirspeed:1l;
uint8 UseAltitude:1;
uint8 ThrottleArmed:1;
uint8 ElevatorArmed:1;

uint8 Flying:1;
uint8 StallAlarm:1;
uint8 Gliding:1;
uint8 Landing:1;

uint8 AltitudeAlarm:1;

uint8 FullFlaps:1;

uint8 FullSpoilers:1;

uint8 GroundProximityAlarm:1;

uint8 PropellorDragOn:1;
uint8 £8:1;
uint8 £f9:1;
uint8 £10:1;

uint8 RCLinkUp:1;
uint8 Glitch:1;
uint8 NavValid:1;
uint8 MustLandNow:1;

} LevFlags;

typedef struct {
uint8 NavArrivalAlarm:1;
uint8 ReturningToOrigin:1;
uint8 GPSvalid:1;
uint8 NavValid:1;

uint8 No3DFix:1;
uint8 WayPointVvalid:1;
uint8 Flying:1;
uint8 Landing:1;

uint8 CameraOn:1;
uint8 CameraShutter:1;
uint8 OutOfBounds:1;
uint8 f11:1;

uint8 f12:1;
uint8 £13:1;
uint8 f14:1;
uint8 f15:1;
} NavFlags;

typedef struct {
uint8 AvionicsBatteryVoltsAlarm:1;
uint8 ServoBatteryVoltsAlarm:1;
uint8 MotorBatteryVoltsAlarm:1;
uint8 BatteryTemperatureAlarm:1;

uint8 MotorTemperatureAlarm:1;

uint8 MotorTemperatureNotAvailable:1;
uint8 BatteryTemperatureNotAvailable:1;
uint8 MotorCurrentNotAvailable:1;

} AirframeFlags;

typedef struct {
uint8 NavVvalid:1;
uint8 No3DFix:1;
uint8 Abort:1;
uint8 ReturningToOrigin:1;
// etc.
} UpdateFlags;

typedef struct {
real32 Latitude, Longditude;
intlé Altitude;
intlé GroundSpeed;
intl1l6 Heading;
intl6é RateOfClimb;
intl6é EstHorizontalError;
intlé NoOfSats;
} GPSState;

typedef struct {
int32 Time;
real32 Latitude, Longditude;
char PointID[8];
intlé Altitude;
uint8 Strategy; // + desired AS
uint8 padding; // force 16 bit align
} WayState;

typedef struct {
uint8 ID[8];
VarRec V[StateVars];
intlé Controls[MaxControls];
intl6 RCCommands[NoOfCommandInps];
intl6 AttitudeSensorSwing;
int8 GroundProximity; // 120dM max
uint8 CommandState;
uint8 Mode;
LevFlags F;
} LevState;

// inter processor FCS update
typedef struct {
intlé GPSAltitude, GPSHeading,
DesiredHeading, DesiredAltitude,
AltitudeLimit;
int8 Strategy;
int8 AirspeedIncrease;
UpdateFlags F;
} Update;

typedef struct {
int32 MissionTime;
GPSState GPS;
WayState Way;
int32 ClosingRange;
intl6 WayHeading;
char TurnAdvice, ClimbAdvice;
NavFlags F;
uint8 AirspeedIncrease;
} NavState;

typedef struct {
intl6é MotorBatteryVolts, MotorCurrent,
AvionicsBatteryVolts, ServoBatteryVolts;
real32 BatteryDischarge;
int8 BatteryTemperature, MotorTemperature;
AirframeFlags F;
} AirframeState;

typedef struct {
intl6 Altitude, Airspeed, GlitchCount,
RateOfClimb;
} BasicState;

typedef struct {
uint8 S[MessageLength];
intlé Value;
boolean RaiseAlarm, Sent;
} MessageState;

typedef struct {
intl6é WindSpeed;
uint8 NorthLift,EastLift;
int8 MaxLift;
uint8 WindSector;
uint8 LiftAdvice;
} EnvironmentState;

