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ABSTRACT

It has become common to translate applications to directed
graphs that can be directly mapped to a programmable logic
device. However, resource constraints force critical resources
such as ALUs to be explicitly reused through switching in-
terconnects. Dataflow computer architectures interpret and
execute directed graphs in a general purpose manner. This
facilitates the acceleration of highly complex graphs and the
ability to execute concurrent applications. Dataflow com-
puters are a well known machine architecture. However, an
investigation is required to accurately measure performance
using current hardware technologies.

This paper describes the low-level design and implemen-
tation of a hybrid dataflow computer called CSIRAC II. A
multi-processor investigation was conducted by cycle accu-
rate simulation. Results indicate that the architecture is
capable of extracting implicit concurrency whilst maintain-
ing high processor utilisation levels. Most importantly, it
was determined that current FPGA technologies can make
the overheads traditionally associated with dataflow archi-
tectures acceptable, particularly in streaming applications.

1. INTRODUCTION

The introduction of high density programmable logic de-
vices (PLDs) has provided researchers with the means to
investigate and implement complex architectures previously
restricted to custom silicon fabrication. In particular, re-
search based upon field programmable gate arrays (FPGAs)
has become widespread in research groups from diverse ar-
eas of interest. It has become common to translate a wide
variety of applications into directed graphs that can be di-
rectly mapped to PLDs. Despite increasing device densi-
ties, some kernels cannot be directly implemented due to
resource constraints. Consequently, hardware reuse is re-
quired through switching interconnects to share critical re-
sources such as ALUs. Dataflow computer architectures in-
terpret and execute directed graphs in a general purpose
manner. Such architectures can thus be utilised to accel-
erate highly complex graphs in their entirety. Additionally,
dynamic dataflow architectures possess the ability to execute
multiple concurrent applications, providing a more flexible
system. Dataflow computers are a well known machine ar-
chitecture, however little known work has been undertaken
to determine the performance of pure machines on current
hardware technologies. An investigation is required to ac-
curately measure their performance using current PLDs. In
particular, an assessment is needed to determine whether
the overheads traditionally associated with dataflow archi-
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tectures can be made acceptable.

A high-level hardware description language (HDL), Handel-
C, was utilised to describe a hybrid class dataflow computer
called CSIRAC II. The CSIRAC II dataflow computer is well
specified at a functional level. However, a move from an
architectural specification to an actual hardware implemen-
tation requires numerous design considerations. This paper
details register transfer level (RTL) handling of operations
not considered in the functional level design. Performance
and resource tradeoffs are discussed and the subsequent re-
source utilisation results presented.

The performance of CSIRAC II running three benchmarks
is discussed. Results indicate that the architecture is capa-
ble of extracting implicit concurrency from light workloads
whilst maintaining high processor utilisation levels.

2. DATAFLOW COMPUTING

The original concept of the dataflow graph is usually cred-
ited to Karp and Miller in their 1966 paper [23]. This work
was later built on by Dennis [10, 11, 12] to form a dataflow
schema. Much enthusiasm and research in the area followed,
however the initial expectations of the paradigm were never
fully realised. Dataflow machines promised simple represen-
tation of parallel computations, performance limited only
by data dependencies and implicit exploitation of paral-
lelism [28]. However, practical considerations revealed the
need for complex matching hardware, high bandwidth inter-
processor networks, inefficient structure handling and a high
overhead for fine-grained parallelism.

Dataflow computing is based upon the direct execution
of a dataflow graph (DFG). A simple example of a DFG is
shown in Figure 1. A DFG is a directed graph comprised of
nodes which represent the instructions to be executed and
arcs that represent the data-dependencies between nodes.
Each node generally has either one or two inputs depending
on whether the node is monadic or dyadic respectively. Data
in the form of packets or tokens flow down the arcs. A node
executes or fires once the tokens directed at each of its inputs
have arrived. Generally, when a dyadic node fires, one token
is absorbed from each input and one or more tokens are
generated on the output. In this way a dataflow computer
is said to be data-driven; instructions are executed once data
dependencies are satisfied.

This paradigm differs greatly from the widely implemented
von Neumann architecture. von Neumann based machines
are required to adhere to an execution order specified by a
compiler and scheduled at run-time by a program counter.
Parallelism is thus hidden by a typical von Neumann tar-
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Figure 1: A simple dataflow graph

geted compiler because the data dependencies are expressed
in a sequential stream of instructions. However by express-
ing a computer program in the form of a dataflow graph, the
parallelism is inherently exposed. For example, in Figure 1,
nodes one, two and three are all independent operations,
thus these nodes can all fire simultaneously. Concurrency is
extracted by a dataflow computer when more than one node
fires simultaneously. Each node is a single instruction and
thus dataflow computers expose fine-grained parallelism.

2.1 Dataflow Classes

The static class of dataflow architecture was suggested by
Dennis in the mid 70’s [13]. The distinguishing feature of
static machines is that only a single token may be present
on any arc. To achieve this, acknowledgement tokens are
sent from the destination node (consumer) to the original
firing (producer) node. The firing rule of a static machine
thus becomes: a node can fire once each of its inputs become
available and there are no tokens on any of its output arcs.
One token per arc facilitates simple matching and compile
time allocation of resources for each arc [22]. Arguably, this
advantage is outweighed by the classes inability to expose
the maximum available concurrency. Loop constructs can
only execute in a pipelined fashion because each iteration
needs to wait for an acknowledgement token. Additionally,
acknowledgement tokens increase token traffic throughout
the machine by up to a factor of two [6]. The static class
restricts programming flexibility. Recursion is not supported
because there can only be one invocation of a function at any
particular time.

In order to overcome some of the problems associated with
static dataflow machines, dynamic or tagged token dataflow
machines were introduced. Groups based at the University
of Manchester led by Gurd [21] and at MIT led by Arvind
[7] began work on dynamic machines in the late 1970’s. The
primary distinction between the static class and dynamic
class of dataflow machines is the support of multiple tokens
per arc and as a result; recursion and multiple function invo-
cations. To facilitate these additional features the dynamic
class utilises tags or colours. A colour is essentially a con-
text; a field carried by a token to differentiate it from other
tokens produced by different instances of the same node.
Because dynamic machines can differentiate between multi-

ple instantiations of the same node, loops may execute in
parallel thus exposing the maximum available concurrency.
This however comes at a cost; a highly complex matching
unit. The matching unit or matching store is responsible
for enforcing the firing rule in dynamic machines. It deter-
mines when the inputs for a particular node are available
and whether the colours match.

2.2 Other Important Dataflow Developments

This paper focuses on static and dynamic classes of dataflow
as they are most relevant to CSIRAC II. However, there were
several other important developments in dataflow architec-
ture. In particular, Papadopoulos and Culler introduced the
concept of the Explicit Token Store (ETS) (26, 9]. The ETS
was introduced in an attempt to reduce the overheads as-
sociated with hash based matching units. Matching space
within ETS was statically allocated at compile time and ac-
cessed through pointers. Also of note was P-RISC [6, 25].
P-RISC combined features of dataflow and standard RISC
architecture in order to provide a more subtle transition from
RISC like architectures to pure dataflow machines.

3. THE CSIRACII DATAFLOW COMPUTER

The CSIRAC II dataflow computer is part of a research
project that began at Manchester University in the 1970’s.
In 1986 the work was continued as part of the joint parallel
systems architecture project at CSIRO and RMIT. In the
early 90’s the work was carried on at the Swinburne Institute
of Technology and now again in 2005 to the present date at
Monash University. Detailed material on the architecture
can be found in [20, 5, 3, 14, 4].

3.1 System Overview

CSIRAC 1II is a hybrid class dataflow computer. The hy-
brid class combines the functionality and advantages from
a modified static class and the dynamic class. The static
class is modified to alleviate the need for acknowledgements
and their associated overheads. This is achieved by allowing
tokens to queue on arcs. If a token is directed at an arc
that already contains a token destined for the same input,
it is placed in a FIFO queue to maintain temporal ordering.
For this reason, the modified static class is named static
queued. CSIRAC II utilises a single tag to support the dy-
namic class of execution. The hybrid model facilitates the
ability to utilise tagging only when required. Thus, if a par-
ticular graph is not coloured, the overhead of tagging is re-
moved. In contrast to other dynamic class implementations,
CSIRAC II maintains the arrival order of tagged tokens. A
queue is maintained for each different tag, eliminating the
need for data reordering.

CSIRAC 1II consists of up to 256 processors connected via
a high speed interconnection network, although only four
processors are simulated here. Similar to other machines,
each processor consists of a matching unit and an evalua-
tion unit. The matching unit forwards tokens destined for
monadic nodes and determines a match for those tokens des-
tined for dyadic nodes. The evaluation unit executes the
instruction set and distributes tokens to their destinations.

Tokens are 130 bits long and consist of a control field,
name, tag and data, see Figure 2. A name is a grouping of
a processor field, process field, node field and two bit fields
that indicate whether the token is destined for a monadic
node and to which input. The processor field indicates the
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Figure 2: Token format

destination processor while the process field facilitates the
simultaneous execution of multiple graphs (identifying to-
kens from each). The tag field is a single context identifier
and is intensionally large to avoid the need for token re-
cycling. Finally, the payload of a token is a data field of
40 bits in conjunction with an 8 bit type field. The data
field is large enough to hold most data types including tags,
integers and single precision floating point. If a datum is
larger than 40 bits, a multi-word token can be formed such
that the name and tag fields do not need to be copied many
times. The first word contains name and tag fields, however
length and lower bound fields replace the data field. The
data is subsequently packed into 128 bit words. Each 128
bit word is accompanied by a 2 bit control field which indi-
cates the header, body and end of multi-word tokens. This
facilitates support for vector and compound (record) tokens
whilst reducing tagging overhead and network traffic.

When a token arrives at a processor it is placed in a queue
called the input queue. The input queue stores unmatched
tokens arriving from the network. Sometimes the match-
ing unit cannot match tokens as fast as they arrive from
the network. This occurs particularly during long bursts of
dyadic nodes. The input queue acts as a buffer to smooth
out such bursts of tokens. Similar to the Manchester ma-
chine, CSIRAC II implements an evaluation queue. This
queue is located between the output of the matching unit
and the evaluation unit. Some functions in the evaluation
unit consume more than a single clock cycle. Thus, dur-
ing bursts of monadic tokens from the matching unit, the
evaluation unit may become overwhelmed. The evaluation
queue buffers this effect and can also reduce starvation if a
sufficient buildup of tokens is available to hide high latency
periods in the matching unit.

3.2 Matching Unit

Pipeline r
Control

T

Queue and

Matching Overflow
Logic Management

(sequential)

Matching
Class  H——1
Storage

Queued
Tokens and
Overflow
Chains

T Forwarding‘

Evaluation
Queue
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Work
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Figure 3: The matching unit

The matching unit consists of a monadic pipeline and a

dyadic pipeline coupled with sequential modules which han-
dle queuing (see Figure 3). Rather than implementing a
single local queue, two queues were implemented; a dyadic
queue and a monadic queue. The first pipeline stage is
shared between the monadic and dyadic pipelines; it de-
termines whether the token arriving at the processor is a
bypass or not, and enqueues the corresponding queue. At
the cost of managing two queues, bypass tokens can com-
pletely bypass the matching unit, irrespective of the state of
the dyadic pipeline. The bypass pipeline is both short and
simple. It consists of two stages; one to dequeue the bypass
queue and one to encapsulate a work packet and enqueue it
onto the evaluation queue.

In the dyadic case, an associative search is required to
determine whether a matching token is present. The key
fields (node and tag) are too large to utilise a fully associa-
tive memory, thus a hashing technique is implemented. The
hashing function implemented is the same function imple-
mented in the CSIRAC II simulator, completed in previous
work [17]. The decision to pipeline the hash function into
three stages was made to ensure high clock frequencies were
achievable.

The token cache is implemented in block RAM as a two-
way set associative cache. The hash table is similarly im-
plemented in block RAM. A read issued to either of these
memories incurs a single clock cycle latency before the data
is ready. Consequently, a read is issued one pipeline stage
before the data is required. Forwarding is required to avoid
read after write hazards for both the token cache and the
hash table. Stage four of the dyadic pipeline performs the
final portion of the hashing function and then subsequently
reads the hash table, token cache and matching class store.
The matching class store holds the matching class definition
for each node. Upon graph loading, the class of each node is
written into the store which is a directly addressable block
RAM.

Instead of using a combination of the node and colour
fields directly, this implementation indexes the cache by the
result of a hashing function. The same hashing function that
indexes the hash table is utilised for the index of the cache.
This scheme ensures that the cache is utilised effectively in
a machine where mixes of uncoloured and coloured tokens
exist,.

Not Vector Not Vector
Abbreviations: Used Used
24 bits | 24 bits 24 bits | 24 bits
Val: Valid Head Tail Head Tail
Qu: Queue Pointer Pointer
Ve: Vector 24 bits | 24 bits 24 bits | 24 bits

IS!a_: ISla‘T Type Data Type Data
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\ e S~ |
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Inp 1 ‘ Data1
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Figure 4: Cache line format

Each token cache line is 231 bits wide, see Figure 4. The
majority of the space is consumed by the cache tag field
which is 124 bits wide (total for both sets). 48 bits is re-
served for data which can be stored in three different con-
figurations. A standard type and data field, a head and tail
pointer to a queue or a single pointer to a multi-word token
may be present. Each set has a corresponding input bit that
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indicates which input the cached token(s) is directed to. A
single LRU bit is implemented which, if asserted, indicates
that set two is the most recently accessed set. Finally, each
set has three state associated bit flags. These bits indi-
cate how the data field should be interpreted. An asserted
‘queue’ bit indicates that pointers to a queue of tokens is
present, whilst the ‘vector’ bit indicates a multi-word token
is stored. The ‘state’ bit is used in conjunction with the
matching class to determine the state of a stored token. In
this implementation the only non-standard matching class
utilised is protect. The protect matching class forwards the
first token arriving on input zero, but then protects the input
until a token arrives on input one. The state bit should fa-
cilitate the addition of most other complex matching classes
if future expansion is required.

Valid
1 bit

Head Pointer
24 bits

25 bit

Figure 5: Hash table entry

Stage five of the pipeline is responsible for determining
whether a match has occurred. Each valid set in the token
cache line fetched by stage four is matched against the in-
coming token. A valid bit is maintained for each set which
identifies whether the data payload is current (valid). A
match is thus determined by ensuring the valid bit is true,
that the node and colour fields match and that the incoming
token is directed at a different input than that of the cached
token. If a match is determined, a work packet is encapsu-
lated and the evaluation queue is enqueued. The valid bit
corresponding to the set whose token was removed is set to
false and the LRU bit is updated. This process constitutes
what is defined here as a cache read hit. Several different
sequences are required if an incoming token does not obtain
a hit with a stored token in the cache. The hash table entry
that was fetched at stage four is inspected. Each hash table
entry contains a valid bit and a pointer to main memory, see
Figure 5. The valid bit indicates whether an overflow chain
is present. If the valid bit is not set then the incoming token
may be inserted into the cache (cache write hit). However,
if the associated cache line already contains two valid sets
then one of the sets must be retired to main memory. The
LRU bit determines which of the sets will be retired. The
set is then placed at the head of an overflow chain which is
pointed to by the pointer in the hash table. The valid bit is
also then set in the hash table. The incoming token can then
be safely inserted into the cache and the LRU bit is updated.
In the case that the valid bit is set in the hash table, before
the incoming token is inserted into the cache a search of the
overflow chain must be undertaken. If a match is located in
the overflow chain then the stored token is removed and the
node is fired. If a corresponding queue is located then the
incoming token is placed directly into the overflow chain.

3.3 Overflow Chain Handling

The matching unit main memory has been structured such
that it is as wide as the largest single data field it is required
to store. This has the effect of minimising the number of
memory accesses required for the largest data entries, how-
ever, it also introduces some storage overhead for data en-
tries that do not consume the entire memory word length.

The four different data configurations which can be stored
in main memory are depicted in Figure 6. Every data entry
in main memory is part of a linked list and as a result, the
24 least significant bits of each of the data configurations is a
pointer. The pointer is 24 bits because this is the maximum
length that the cache can store without significant wastage.
The widest data entry in main memory is a 128 bit word of
packed multi-word token data. Thus main memory is config-
ured as a 152 bit wide memory. By organising the memory
in this way, four 32 bit vector elements may be stored and
retrieved simultaneously (in one memory access) and passed
to the evaluation unit.

Type Data Disp. | Type Data Not Used Next Pointer
8 bits 40 bits 1bit | 8 bits 40 bits 31 bits 24 bits
Queued Data
Vector Data Next Pointer
128 bits 24 bits
Vector Data
Type Data Next Pointer Not Used Next Pointer
8 bits 40 bits 24 bits 56 bits. 24 bits

Intermediate Vector Data
Type U";‘;‘ﬂ Vect Pointer
8bits [15bis| 24 bits
Head Pointer| Tail Pointer
24 bits 24 bits

Type Data
8 bits 40 bits

Node
22 bits

Vect
1 bit

State
1 bit

Overflow Chain
152 bit:

Not Used
14 bits

Next Pointer
24 bits

Queue
1 bit

Colour
40 bits

Input
1 bit

Figure 6: Main memory fields

Overflow chain entries contain the same fields as a cache
set except they also store a pointer to the next chain entry.
Each entry either holds its data payload directly or in the
case of a queue or multi-word token, via pointers. The for-
matting of the entries is general enough to allow overflow
chains with queues of multi-word tokens. Such structures
are supported by storing a pointer in the overflow chain data
field that points to an intermediate word in memory. This
intermediate word then contains the length and lower bound
fields of the multi-word token, a pointer that points to a list
of the token data and another pointer that points to the
next intermediate word in the queue.

Queue and overflow chain maintenance are not pipelined,
rather they are performed sequentially. This is because mul-
tiple main memory accesses are required. Main memory
must be allocated and deallocated by the hardware when-
ever a queue or overflow chain is created, destroyed, ex-
panded or reduced. As such, a dynamic memory allocation
scheme is required. Such a scheme must be fast as allo-
cation and deallocation will occur often, particularly when
tokens are queued which is expected to occur more often
than overflow chain generation. A simple list of free mem-
ory locations is maintained with a global pointer that points
to the first location. The memory is initialised so that each
adjacent memory location points to the next in increasing
order. Allocation is then simply performed by updating the
global pointer by reading the address which is stored in the
memory location pointed at by the old global pointer. The
word to be stored is also written to the address pointed to
by the old global pointer. Thus the allocation and writing
of one word of memory consumes one read and one write.
Similarly, the cost of a deallocation after a memory read is



MECSE-9-2007: "An FPGA Based Implementation of the CSIRAC Il Dataflow Computer”, A. Sloan and G. Egan

one read and one write. Initially, the data is read from the
requested address. The global pointer is then stored in the
requested address and the global pointer is updated to the
address being deallocated.

3.4 Evaluation Unit
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Figure 7: The evaluation unit

The evaluation unit consists of a five stage pipeline cou-

pled with numerous floating point and integer function pipelines.

It also houses the node store, evaluation queue and multi-
word output buffer, see Figure 7.

3.5 Work Packet Fetch and the Node Store

The evaluation queue is dequeued in stage one — if the
queue is empty, a counter is incremented to keep track of
evaluation unit starves. The evaluation queue is currently
implemented in block RAM as a FIFO buffered channel with
8,191 entries'. However, this storage space may be moved
to an external queue chip in order to minimise the amount
of block RAM required. Each work packet facilitates two
operands each with four 32 bit words (multi-word tokens).
This allows vector operations which quadruple the maximum
throughput of the evaluation unit (in comparison to work
packets that only contain single word operands).

The node store is implemented as a directly indexable
block RAM. The node field is extracted from the work packet
in stage one is used to index the node store at stage two
which then produces a node store entry in stage three one
cycle later. There are 32,768 entries in the node store, sup-
porting the same number of nodes in the graph being exe-
cuted. Each entry contains a literal bit and a trace bit which
indicate whether a literal is present or whether detailed exe-
cution information should be reported respectively. An 8 bit
function field indicates which instruction is to be executed.
The number of destinations is also stored in an 8 bit field, al-
though this implementation only supports up to three desti-
nations without a literal or up to two destinations with a lit-
eral. The field is maintained at its originally designed length

'Powers of two are avoided in FIFO buffers as Celoxica in-
dicates a higher latency for these lengths

to maintain compatibility with the assembler and future ad-
ditions to the architecture. Finally, three destination name
fields are present, although the third can either hold a 40 bit
name or 48 bit literal field — see Figure 8. Multi-word liter-
als are supported through an additional block RAM storage
called the node store main memory (NSMM). The NSMM is
128 bits wide and can store up to 1,024 128 bit multi-word
tokens. If a multi-word token literal is present, the node
store entry stores a pointer to the location in the NSMM
where the literal data resides. A length field is also present
in the node store entry which indicates how many NSMM
words the literal consumes. Because memory in the NSMM
is only allocated at graph load time, it is static. Thus each
word can be fetched by incrementing the address from the
starting pointer in the node store entry until the number of
words indicated by the length field have been fetched.

Type Length Pointer
8 bits 24 bits 16 bits
Type Data

8 bits 40 bits

Name Name ‘ Name ‘

No. Dests.
8 bits.

Function
8 bits

Trace
1 bit

Literal

1 bit 40 bits 40 bits 40 bits

146 bit

Figure 8: A node store entry

Stage three of the pipeline aligns arguments according to
the input point specified in the work packet. However, it
also handles the replication of single token literal arguments
when they are being executed against a multi-word partner.
Similarly, it replicates single token arguments against multi-
word literals. The fetching of multi-word literals is also con-
trolled by stage three. The functionality of the CSIRAC
II instruction set is dependent on the type of arguments.
Replication of arguments is required to ensure the correct
function is executed. For example, the multiply instruction
can either multiply two single arguments together, two vec-
tors or a vector and a stream of replicated single tokens.

3.6 The Execution Stage

Stage four of the evaluation unit pipeline is responsible for
executing the instruction set of CSIRAC II. In this imple-
mentation 78 instructions have been implemented. Most in-
structions execute in a single cycle, however complex multi-
word token manipulation, sequencing and floating point op-
erations consume several cycles. Floating point is imple-
mented through the Celoxica floating point library. Multi-
ply, divide, add, subtract, cast to integer and six comparison
functions are implemented. Each of these (except compar-
isons) are fully pipelined and operate in parallel with the
evaluation unit pipeline. Floating point operations are ini-
tiated in stage four of the pipeline. The evaluation unit
continues executing instructions whilst the floating point
instruction progresses through the relevant floating point
pipeline. One completed, the floating point pipeline asserts
a flag to indicate a result is ready. In the next available
clock cycle, stage four of the evaluation pipeline forwards
the floating point result to stage five. A round robin scheme
is implemented to prioritise the switching between multiple
floating point pipelines with results ready. In addition to
the standard floating point instructions mentioned above, a
16 stage integer divider pipeline is implemented in a similar
manner, as are the Sine and Cosine functions. The Sine and
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Cosine functions however are not pipelined, they are sequen-
tial. The Celoxica fixed point CORDIC based trigonometric
library is utilised to implement these functions.

Some multi-word token manipulation functions require
one of the arguments to be buffered. For example, the
‘form compound’ function appends two arguments together
to form a compound token. If both arguments are vectors,
argument one must be buffered. This is because the incom-
ing arguments arrive together (2 x 128 bit words) but they
must be transmitted in serial (1 x 128 bit word). Any node
that has more than one destination associated with it must
also buffer its result if the result is a multi-word token. This
is because the entire multi-word token must be sent to each
one of the destinations in serial. For these reasons a multi-
word token buffer was implemented in the evaluation unit.
The buffer is stored in block RAM and has space for 256 en-
tries (although this is easily adjustable depending on device
resources).

The final stage of the evaluation unit pipeline (stage five)
controls the transmission of tokens to the network. If one
destination is present for the current node then the evalua-
tion pipeline runs uninterrupted. In the event of a node with
two or three destinations, the pipeline is stalled for one or
two cycles respectively (output buffering is pushed through
to the interconnection network input). This minimises the
block RAM required for buffering within the evaluation unit
and places the burden on the interconnection network, see
Section 3.7.

3.7 Interconnection Network

A simple but fast interconnection network was implemented
to facilitate inter-processor communication. In order to en-
sure the network does not become overwhelmed with tokens,
input buffering is implemented through the use of queues in
block RAM. As a token arrives at an input in the network
FPGA, it is placed in a FIFO queue corresponding to its des-
tination processor, see Figure 9. Each input on the network
FPGA has its own grouping of FIFOs. Using this scheme
and assuming there is always a token buffered for any par-
ticular destination processor, one token is guaranteed to be
written to each output on every clock cycle.

Graph loading is performed by the network FPGA. It is
envisaged that the graph to be executed would be available
to the network FPGA either through a connection with a
host machine or an off-chip non-volatile memory storage. A
logic module on the network FPGA reads the memory or
input connection and distributes nodes and priming tokens
to all of the processors. An internal communication control
code is attached to each token to indicate to the matching
unit that the payload is either graph or machine configu-
ration information. The matching unit then encapsulates
this information into a work packet and enqueues it into the
evaluation queue. Matching class information is also stored
directly in the matching unit. The evaluation unit stores the
node definitions into the node store and the node store main
memory. In addition to node definitions and priming tokens,
machine configuration is also passed from the graph. In par-
ticular, auto streaming, insertion rate and the archaic flag
are defined by the graph. Auto streaming and insertion rate
turn on automatic streaming from an external data source
at a particular rate (samples per clock cycle). This is used
primarily for streaming large data sets like pixels from an
external source directly into processor number zero. The ar-
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Figure 9: The interconnection network

chaic flag indicates the old instruction set is being utilised;
this changes the functionality of some instructions.

3.8 System Summary

Table 1 summarises the storage capabilities of the imple-
mented system. For the purposes of simulation, all of the
tabulated storage units have been constructed from block
RAM. When implemented on a suitable hardware system,
it is expected that the dyadic and evaluation queues will be
moved to external queue chips. The matching unit main
memory is also expected to be moved to an off-chip mem-
ory. Relocating these storage units not only frees up valuable
block RAM, it also allows them to be significantly expanded
in capacity. The current storage capabilities would however
fit entirely into block RAM (without external memories) if
the processor was spread across two large FPGAs? (one for
the matching unit and one for the evaluation unit).

Monadic Queue Length 4,095
Dyadic Queue Length 16,383
Matching Class Store Entries 32,768
Hash Table Entries 32,768
Cache Lines 8,192
Matching Unit Main Memory Words 32,768
Total Matching Unit Memory (Bits) 10,551,036
Evaluation Queue Length 8,191
Node Store Entries 32,768
Node Store Main Memory 1,024

Vector Buffer Entries 256

Total Evaluation Unit Memory (Bits) 7,078,140
Total Memory Bits 17,629,176
Total block RAM Bits (with off-chip mem.) 8,388,990

Table 1: System storage specifications

2This is an approximation that depends on the target de-
vice and how effectively the vendors fitter allocates individ-
ual block RAMs. However it provides a crude idea of the
amount of block RAM space that would be required for these
specifications.
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In order to gain hardware resource utilisation estimations,
the Handel-C code was synthesized to an EDIF netlist. Ta-
ble 2 summarises the results. A Xilinx Virtex 4 was chosen
as the target device as it is the most recently released FPGA
supported by DK4. The Handel-C technology mapper is
aware of the Virtex 4 architecture and can thus provide
an accurate LUT count. Recent research determined that
an Intel Pentium processor consumed approximately 50%
of one Xilinx Virtex 4 LX200 FPGA[24]. Results from this
work indicate that one CSIRAC II processor would consume
approximately 30% of the same device.

System Module Virtex 4 LUTs | % of Total
Matching Unit 16,221 27.17%
Evaluation Unit 25,239 42.27%
Floating Point Unit 18,246 30.56%
Single Processor Total 59,706 100.00%

Table 2: Single processor resource utilisation

System Module Virtex 4 LUTs
4 Processors 238,824
Interconnection Network 16,385
Four Processor Total 255,209

Table 3: Four processor resource utilisation

Table 3 depicts the resource requirements for four proces-
sors and the interconnection network described in Section
3.7. The total LUT count exceeds the resources available on
the largest Virtex 4 LX device (LX200) [1]. However, the
logic of the design would most likely fit into the largest Vir-
tex 5 LX device (LX330), which Xilinx estimates to contain
331,776 LUTs® [2]. There is insufficient block RAM on a
single Virtex 5 LX330 to implement four processors and the
interconnection network. Consequently, off-chip memories
would be required. The Virtex 5 LX300 device has 1,200
I/0O pins or 300 per processor. This is also insufficient to
implement memory busses as wide as those assumed in this
work. Bus widths could be reduced and accessed multiple
times to reduce the number of required I/O pins. This would
have the effect of reducing the performance of the system,
however would maintain the flexibility and convenience of a
single FPGA implementation. This may be an acceptable
price to pay for an implementation targeted at evaluation,
eliminating the need for five FPGAs (one for each processor
and one for the interconnection network).

4. SIMULATION RESULTS

This section presents detailed cycle accurate simulation
results on a four processor implementation of the CSIRAC
II dataflow computer.

4.1 Benchmark Overviews

The first benchmark investigated was a portion of the
Canny edge detection algorithm [8] written in i2 [19]. In
particular, the first two steps of the algorithm were imple-
mented. One 5x1 and one 1x5 convolution mask are first

3The Virtex 5 resource count is a Xilinx estimate; the Virtex
5 uses six input LUTs whereas the Virtex 4 uses four input
LUTs

applied to an incoming image stream. These vector masks
are a discrete approximation to a Gaussian function and are
applied to reduce noise in the original image. Next, two
3x3 masks are applied to estimate the gradient in the x and
y directions. The edge strength is then computed by sum-
ming the absolute values of the two gradient components.
In order to keep simulation time reasonable, a 128 x 128 im-
age is streamed into processor zero using the auto-stream
functionality described in Section 3.7.

The second benchmark under consideration is the solution
of shallow water equations. This benchmark is an iterative
2D grid based application that models a square layer of fluid.
In particular, equations involving fluid velocities, pressure,
field height, cartesian mass fluxes and potential velocity are
modeled [27]. An 8x8 grid of reals is utilised and 11 itera-
tions are executed. The program is written in Pascal [16].

The final benchmark presented is the numerical computa-
tion of 7. This is a program written in Pascal that demon-
strates the recursive performance of CSIRAC II. The pro-
gram computes 7 through rectangular integration using a
fixed number of rectangles [15].

4.2 Single Processor Results

The single most important measure in determining the
performance of the matching unit is the evaluation unit utili-
sation (EUU). The EUU is determined by recording the pro-
portion of clock cycles in which the evaluation unit is kept
busy. The evaluation unit is fully pipelined and thus can
produce a result token each clock cycle. If CSIRAC II can
keep it busy, the overheads usually associated with matching
units have been made acceptable.

Canny Shallow Pi
Clock Cycles 1,443,351 | 15,086,251 | 305,051
Nodes Fired 1,053,959 1,240,407 | 149,516
Monadic Fires 68.82% 45.66% | 53.43%

Tokens Generated | 1,417,394 | 11,459,281 | 223,241
Multi-word Tokens 0.00% 83.12% 1.84%
Max. Main Mem. 2,085 10,918 14,240
Max. Cache Sets 19 4,011 12,310
Avg. EUU. 98.28% 95.74% | 83.49%

Table 4: Single processor benchmark summary

Table 4 summarises the single processor benchmark re-
sults. In particular it can be seen that the EUU for all three
benchmarks is very high.

The average EUU for the Canny benchmark was deter-
mined to be approximately 98%. Several factors contribute
to this high utilisation. Approximately 69% of the nodes

fired were monadic, significantly more than the monadic/dyadic

mix observed in the other benchmarks. This is due to the
large amount of replication required — each incoming pixel
must be copied numerous times because at some time they
must appear in each cell of each mask. Such a high propor-
tion of monadic fires helps to keep the evaluation unit busy
as bypass tokens do not require matching.

All of the accesses in the matching unit were performed in
cache — no overflow chains were formed (see Table 6). This
is the expected result because the graph is not coloured.
Thus the cache is indexed directly by node, and given there
are significantly less nodes in the graph compared to cache
lines, no retires will occur. However, a significant propor-
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Canny Shallow | Pi
Avg. Mon. 1.49 1.70 29.99
Max. Mon. 14.00 92.00 | 1,608.00
Avg. Dya. 452.92 262.45 | 3,419.50
Max. Dya. 920.00 | 2,237.00 | 13,897.00
Avg. Eval. 46.89 128.40 | 2,226.90
Max. Eval. | 1,302.00 1,673 | 7,720.00

Table 5: Queue Lengths

Canny Shallow | Pi
Cache Read Hits 7.87% | 39.90% | 42.46%
Cache Write Hits 11.79% | 43.67% | 40.02%
Cached Queue Accesses 80.35% | 11.63% | 0.00%
Cached Prt Accesses 0.00% 3.25% | 0.74%
Total Cached Accesses 100.00% | 98.45% | 83.22%
Cache Retires 0.00% 0.44% | 6.80%
Failed Chain Searches 0.00% 0.54% | 3.18%
Successful Chain Searches 0.00% 0.56% | 6.80%

Table 6: Cache Performance

tion (80%) of the accesses were cached queue accesses. This
is expected as one line of the image must be constantly
queued, ensuring the data dependencies are satisfied for the
3x3 mask. Such a proportion of queued accesses places a
burden on the matching unit as continuous main memory
accesses are required. This is supported by the high average
dyadic queue length — approximately 453 tokens deep.

The queue lengths observed (see Table 5) indicate that
the load on system storages remain well within the limits
of the machine (specified in Table 1). An initial spike in
the evaluation and dyadic queues occurs due to the prolif-
eration of priming tokens in the initial stages of the com-
putation. If the benchmark was scaled up to higher res-
olutions, the matching store main memory would become
highly utilised. This is a consequence of queuing at least
one horizontal line of pixels to satisfy data dependencies.
However, it is expected that the main memory would be
moved to an off-chip RAM in a full hardware implementa-
tion, expanding its capacity and ability to process higher
resolution frames/images.

Shallow is the closest benchmark to a real application; it
consists of several procedures which all perform a reason-
able amount of work. This is apparent from the queue and
memory statistics. At one point in the computation, ap-
proximately 33% of the matching unit main memory is con-
sumed. Maximum queue lengths grow into multiple thou-
sands, although remain well within the limits of the machine,
specified in Table 1. Despite the modest storage capacities,
reasonably complex computations can be comfortably per-
formed.

A large percentage (83.12%) of the tokens transmitted are
multi-word tokens. This is because the grid is maintained
as one compound token. The single processor average EUU
is approximately 96%. Thus the use of multi-word tokens
has not detrimentally effected the machine utilisation. This
indicates that multi-word token maintenance within the ma-
chine is working effectively and efficiently.

A small percentage of matching unit accesses involve over-
flow chains (1.5%). This is not unexpected due to the size
of the benchmark. There are 3,374 nodes in the graph and

a great number of unique colours are utilised. This places
a high load on the token cache. Despite the overflow chain
accesses, the latencies involved in matching are not sufficient
enough to greatly effect the EUU.

The single processor EUU for the Pi benchmark was mea-
sured to be approximately 83%. Whilst this is a reasonable
result, either the graph or the machine is holding back the
potential performance. An observation of Table 6 indicates
that approximately 17% of accesses to the matching unit
involve overflow chain searching or manipulation. Despite
the small number of nodes in the graph (102), many colours
are generated due to the recursive nature of the algorithm.
Consequently, some sets in the cache are retired to an over-
flow chain when more than two node/colour fields hash to
the same cache line.

A small percentage of cache retires only accounts for some
of the EUU reduction. The final part of the computation
does not involve any monadic fires. This is because the
base case has been reached; the results are getting passed
back to each invoking context. The tokens being matched
are the return context addresses that were generated as each
level of recursion was invoked. The evaluation unit has little
to compute during this period, only the summation of the
rectangle areas. Thus the reduction in utilisation is due
to an artifact of the tagged recursion graph which causes a
long burst of dyadic fires at the end of the computation. The
overhead involved in the recursive graph isn’t prohibitive in
this benchmark. It could however be made less predominant
if the amount of work computed at each level of recursion
was increased.

This benchmark places a significant load on system stor-
age units. The dyadic and evaluation queues actually come
close to overflowing and the matching unit main memory is
43% utilised. This is due to the massive exposure of paral-
lelism. At the beginning of the computation the recursive
tree is fully unraveled, exposing maximum parallelism. This
benchmark demonstrates the need for throttling of graphs
where there is far too much parallelism for the number of
processors involved. Such a throttling mechanism is part
of the CSIRAC II architecture [18] however was not imple-
mented here.

4.3 Multi-processor Results

Num. | Pi Shallow | Canny | Pi Cached
Proc. | EUU EUU EUU Matches
1 83.49% | 95.74% | 98.28% 83.22%
2 92.31% | 88.11% | 94.07% 92.76%
3 93.39% | 74.35% | 89.32% 96.25%
4 93.50% | 76.00% | 88.42% 98.53%

Table 7: Multi-processor benchmark summary

Table 7 summarises the multi-processor results. In gen-
eral, the EUU decreases as more processors are added due
to a reduction in the work available per processor. This
trend is reversed in the Pi benchmark due to added cache
performance. The Pi results indicate that the average EUU
actually increases with the addition of more processors. This
is a result of distributing the load on the token cache across
multiple processors and thus achieving a higher proportion
of cached accesses. The speedup achieved is super-linear
(see Figure 10) due to the increase in cache performance
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and consequently evaluation unit performance. This clearly
demonstrates that linear speedup is easily achieved by the
machine when sufficient parallelism is exposed.

Multi-processor results from the Shallow benchmark are
impressive; the speedup achieved is not linear however four
processors manages a speedup of well over 3x. The grid size
utilised is very small. It is unlikely a conventional multi-
processor would gain any speedup at all (due to the small
amount of work computed compared with communications
overheads). CSIRAC II demonstrates the ability to gain
speedup in applications with little work. Inter-processor
communication is an integral part of the architecture and
thus incurs far less latency than that in a conventional multi-
processor. If a little more parallelism was exposed through
a larger grid size or by the compiler chain, this benchmark
would scale much higher (beyond four processors).

The addition of multiple processors for the Canny bench-
mark reduces the average EUU due to a reduction in avail-
able work per processor. Despite the reduction in EUU, the
speedup achieved over two, three and four processors is close
to linear. A four processor system consumes 407,251 clock
cycles to process 16,384 pixels. This equates to approxi-
mately 24.86 clocks per pixel, or if a clock frequency of 250
MHz is assumed, 10.06 million pixels per second. There is
sufficient work in this benchmark to suggest that it would
scale to at least eight processors. The queuing nature of the
benchmark places a high burden on the matching unit. How-
ever, a high proportion of bypass matches combined with the
efficient implementation of queuing within the matching unit
maintains a high utilisation. Thus the benchmark demon-
strates that high performance stream based computing is
achievable on CSIRAC II and that the matching overheads
involved are more than acceptable.
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Figure 10: Multi-processor Speedup

5. CONCLUSION

The use of DK4 and Handel-C enabled the rapid devel-
opment and verification of a complex architecture. It was
found that Handel-C operates at a sufficiently low abstrac-
tion level in order to optimise complex machine architec-
tures. However, it also provides sufficient higher level flexi-
bility to eliminate verbose and repetitive expression of fun-
damental elements.

Dataflow computers are a well known machine architec-
ture, however little known work had previously been under-
taken to determine the performance of pure machines on cur-
rent hardware technologies. Consequently, an investigation
was undertaken to accurately measure their performance us-
ing current PLDs.

The results presented demonstrate that the architecture
is capable of extracting implicit concurrency whilst main-
taining high processor utilisation levels. The storage units
within the processor were found to be sufficient for each
of the benchmarks. However, image processing of higher
resolutions or more complex, highly parallel graphs would
require the expansion of the available queue and memory
space. This is expected to be facilitated through off-chip
memories in a complete hardware system. The multi-word
token manipulation capabilities were demonstrated to work
effectively and efficiently. The architecture was found to be
capable of extracting parallelism from very light workloads.
This was demonstrated through multi-processor speedups
on small benchmarks. Such small workloads would be un-
likely to show any speedup on conventional machines due
to inter-processor communication overheads. Finally and
most importantly, it was determined that current FPGA
technologies can make the overheads traditionally associated
with dataflow architectures more than acceptable. This was
particularly evident in the stream based image processing
benchmark which achieved close to linear speedup despite
heavy queuing of tokens.
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