A Data~Flow System for Decentralised Control

G. K. Egan
Department of Computer 3cience
University of Manchester
Oxford Road
. Manchester

M139PL
England.

ck u

Modern Control Theory has failed in its attempt to deal with
Large Scale Multivariable control problems., It demands that all
process state information be made available to a gingle gentral
controller (centrality) and this has led to serious problems with
communications, computational tractability and reliability
[Sandelll.

Decentralised Control Theory and inexpensive computational
elements in the form of the microprocessor, both developed receantly,
hold the hope of extensive control decentralisation in Large Scale
Multivariable control systems. This may eventually lead to
decentralised computing systems with hundreds of computational
elements,

The Problem

The models of conventional computing systems also assume
centrality. However, they have limited practical value and some
positive disadvantages [Backus].

Control engineers are faced with the unsatisfactory prospect of
resting their decentralised control models on computing systems and
models of dubious practicality. They urgently require practical
computing systems which are a match for the highly concurrent
environments of decentralised control.

Possible Solution

One possible computing model, with a sound mathematical basis,
which seems well suited to decentralised control is Data-Flow [Karp,
Adams ete.]. 1t is of a stimulus-response type: communication
information is inherent in the model; it is asynchroncus and 30 well
suited to systems with loosely <¢oupled processing elements; the
concept of centrality is absent.

Experimental System

Computing systems for decentralised control will consist of a
large number of asynchronously communicating modules co-operating on
some overall control task. Communication paths between modules may
be bit~-serial, or at best byte-parallel, and the modules themselves
of limited computational capability. It is important thereflore not
to overioad communication paths and modules with excessive token
tagging schemes and their supporting vprimitives. Furthersore
econcurrency in decentralised control is predominantly explicit. The
more implicit forms of concurrency, which systems with large token
context tags are designed to exploit [Arvind, Gurdl, are less
evident.

Minimal tagging does not severely limit us however as sub-graph
sharing and even multiple recursion is still possible. The only tags
in this architecture are those associated with token destination
(node description location}, mode (type and length of the token data
field) and only when sharing a sub-graph, a ¢opy number.

Given the above, the main requirement of the hardware is to
maintain the strict queueing of tokens on ares for any gilven
sub-graph invocation. This is not as difficult as it may first
appear as we know quite a lot about the pattern of arrival of tokens
at any given node type.

S Mod s

The structure of the nodules (Fig. 1), while far from optimal,
attempts teo maximise flexibility in the initial experimental
configuration; it also allows us to assess the practicality of
evaluating data-flow graphs on conventional systems.

communication structure

__"_,,’-—’—-“A__/T//’—

oQ 18
T conventional bus
PE 19 L9 AQ NS
é |
System Module

Figure 1

Each module is comprised of several gub-modules and, in the
initial implementation, they are as follows:

PE (processing element) A shared controller and execution
unit,

NS (node description store) A conventional store
containing desoriptions of graph nodes,

19 (input gqueue) A hardware FIFO buffer through which the
module receives tokens from other modules,

EQ (loecal queue) A software queue containing tokens
generated by the module which are destined for the same
module {similar to the agenda gqueue of Davia's
DDM1)[Davis],

0Q {output queue) A hardware FIFQO buffer through which the
module transmits tokens to other modules,

AQ {(arc queue) A linked 1list structure containing tokens
which are gueued on one arc of two-~input-arc nodes.

The 1linked 1list structure in AQ is the means by which the
queueing of tokens on arcs is maintained within modules and as such
deserves some comment. Each two-input node description has a link
into AQ,the first entry of which contains the following:

1) The igggg-ggint on which tokens are currently
queued,

2) A pointer to the first token on the are,
1) & pointer to the last token,
) If the module supports sub-graph invocations,

a gopy number and a pointer to a similar entry
for any other active invocation,

Module operation is fairly simple and proceeds as follows:
The PE scans LE and 1Q until a token is present,

The node description corresponding to the token which has
just arrived is examined to see if it has one or two
inputs.

If the node has one input, the PE evaluates the node~
function and writes any resulting tokens to 0Q or LQ.

If the node has two inputs, AQ is accessed via the node
iink for a matching token.

If the matech is successful, the node-function is
evaluated; otherwise the token is linked to the end of the
appropriate arce queue.

The PE then returns to scan LQ and IQ.

The detailed behaviour of a module may vary depending on its
primary function le. input-output, computation etc.

Shared Sub-graphs

Many modules may not support shared sub-graphs eg. simple
controllers at the periphery of a control system. However, for those
modules which do support shared sub-graphs, the following mechanism
is used to separate different sub-graph invocations. On entry and

exit from a sub-graph a copy number is gomputed using the equations
below:
entry newcopy = (oldcopy * maxoccurrence) + occurrence

exit neweopy (oldcopy - occurrence) DIV maxoccurrence

It is important to note that the gopy number is only appénded to
tokens actually invelved in a shared sub-graph invocation. The gopy
numbers correspond to branches of an n~ary tree.

Don't-koows (%)

Most of the token types in the system are conventional for
example real, integer, character, bit-string, end-stream, However
some are less conventional such as node; this is used when loading
graphs onto the system.

One of the more novel types is the mede 2. While it may be used
in many applications eg. partial pattern matching , it's main use is
to communicate information about exceptions occurring during the
evaluation of a graph to the graph itself. In this system exceptions
fall into two classes:

1) Faults in evaluation or attempted evaluation of node
functions eg. function argument mode exceptions (ine.
1/0), arithmetic exceptions, range exceptions (data
windowing) etc. With this class of exception a 2 token can
be safely propagated to succeeding nodes. 7 tokens
propagated in this manner retain the original reason for
exception and the destination at which that exception
ocourred. The 2 token can not be used as a control token

on conditional path nodes (Pass-if-True, Pass-if-Falsge,
Switeh).

2) Destination exceptions e.2. non—-existent node
description, inactive node input-point etec., Because no
successor node exists for this class of exception, a
reserved excention-node is defined in egach module. A& token
of mode destination is sent to one input-point of the node
and any 2 arriving a3t the other input of the exception
node is sent to that destination.

Input-output

Input and output node names are preserved and are associated with
particular devices., The actions of input-output nodes are as
follows:

1) Input A response destination, which remains valid until
another arrives, is sent to one input-point; to the other
is sent a token of any mode. Depending on the nature of
the device, the associated input node will eventually
respond with valid data or a 2. If no response destination
has been aspecified, a 2 1is sent to the module's
exception-node,

2} Qutput A response destination, as for input, is sent to
one input-point and data to the other. The node responds
with a copy of the original data or a 2. If no response
destination is specified then a 7 is sent to the module's
exception-node only when the output action fails.

Storage-nodes

In adaptive controllers it is necessary, from time to time, to
update "constants" in for example the difference equations which
represent the digital compensator. While it is possible to retain
information by circulating these "constants" it 1s, to say the
least, not very efficient.

The approach taken here is to provide a storage node. One
input-point of this node receives written tokens while the other,
when receiving any token, causes a copy of the last written token to
be transmitted. If no token has been written a 7 is issued.

Because read and write operations are not synchronised, graphs
using storage nodes may pass through short periodas of "fuzzy
determinacy" when write actions occur.

Status

Most of the system and process environment is being simulated on
a large conventional system (MU5) [Ibbett]. Four modules have been
conatructed and are currently being commissioned. These are
connected to MUS and represent real modules in the overall system.

Research in progress includes:
1) Application-specific graphical languages.

2} Graph partitioning techniques to minimise inter-module
communications using input-ocutput nodes as clustering
centresa,

3) Applications including object recognition using a
"laser tracker" [Ishiil.

4y It is quite poasible to configure modules which exploit
coneurrency in arc queueing, node execution and result
transmission to a far greater degree than the experimental
module structure. Such modules are being investigated.

References

[Adams]

fArvind]

[Backus]

{Davis]

{Gurd]

[Ibbett]

[(Isnii}

[Karp]

[Sandell]

Adams, D.A., "A Model for Parallel Computations", in

Hobbs (ed) Parallel Processor Svstems, Technoloszies and
Applications, Spartan Books, 1970, pp311~333.

Arvind & Gqstelow K.P., ™A Computer Capable of
Exchanging Processors for Time", Information Processing
77, North Holland, 1977, pp849-853.

Backus, J., "Can Programming be Liberated from the von
Neumann Style? A Functional Style and Its Algebra of
Programs"™, CACM Vol. 21 No. 8, Aug. 1978,

Davis, A.L., "Architecture of DDM1: A recursively
3tructured Data Driven Machine'™, Technical Report,
Dept. of Computer Science, University of Utah, 1977.

Gurd, J.R., Watson I. & Glauert J.R.W., "A Multilayered
Data Flow Computer Architecture", Draft document, Dept.
of Computer 3cience, University of Manchester, Jan.
1978,

Ibbett, R.N. & Capon P.C., "The Development of the MUS
Computer System", CACM Vol. 21 No. 1, Jan. 1978.

Ishii, M. & Nagata T., "Feature Extraction of
Three~Dimensional Objects and Visual Processing in a
Hand-eye System", Pattern Recognition, Vol. 88, p224.

Karp, R.M., & Miller R.E,, "Properties of a Model for
Parallel Computations: Determinacy, Termination and
Queueing”, SIAM J. Applied Mathematics, Vol. 11 No. 6,
Nov. 1966, pp1390-1411,

3andell, N.R. et al., "Survey of Decentralised Control
Methods for Large Scale Systems", IEEE Transactions on
Automatiec Control, Vol. AC-23 No. 2, Apr. 1978,
pp108-128.

