JOINT ROYAL MELBOURNE INSTITUTE OF TECHNOLOGY AND

COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION

PARALLEL SYSTEMS ARCHITECTURE PROJECT

The RMIT Data Flow Computer
DIL1 User's Manual
TR 112059R

M. Rawling ¥t
C.P. Richardson *

T Department of Communication and Electronic Engineering
Royal Melbourne Institute of Technology
124 Latrobe St
Melbourne 3000

i Department of Computer Science,
University of Manchester,

Oxford Road, Manchester, M13 9PL,
England.

Version 1.0 Original Document May 1980 Revised Sept 1987

ABSTRACT:

DL1 is a high level language which produces code for the RMIT dataflow machine.

This document is a user's manual for this langauge.

el

DL1 User's Manual Page 1

TABLE OF CONTENTS

LOINTRODUCTION e 2
2. STATEMENTS e e 3
2.1 The Functional Definition -oocooovooroveoeoioooooo 3
2.2 The 'SWITCH' Statement ..ocoooveevevrieeioesosoes oo 4
2.3 The JOIN' Statement ..iocciiiiioceeeoerieoeecesoe oo oo 5
2.4 The 'PRIME’ STAemMent .iooooiiiiieieios oo 7
2.5 The 'PROTECT' SHAEMENt ooovereroeeeroeeeessoseoe oo 7

30 SUBGRAPHS e 9
3.1 Subgraph Declarations ccccooommoirooeeee e 9
3.2 Shared Subgraphs ..o 9
3.3 Forward Referenced Subgraphs ..o..ooovoovoorocooeosos o, 10

4 CONSTANTS e e e 11
S, EXPRESSIONS e i2
5.1 Deferred EXPIessions .oocooovieoooeeeeooieeeooooeooo 13
5.2 Conditional Expressions, Lazy and Eager Evaluationcccoeen.. 13

6. SYSTEM FUNCTIONS AND OPERATORS oo i4
6.1 Mathematical Functions coocooceomoiouioooooeoe oo 14
6.2 Logical Functions ..c.coecoeeeoooeovsooooe 14
6.3 Input and OUIPUL .oooviiiiiiioeioeiieoee oo 14
6.4 Stream Functions ..o e i4
6.5 Miscellaneous Functions ooccccoovioiooioooeo 15
6.5.1 MERGE i 15

6.5.2 SETDEST and LABEL ... et s 16

6.53 ISSUE oo 16

6.5.4 STORE i 16

6.5.5 YIELD and SETCOPY ..icooiiioooooeeo 16

0.5.6 SSR, SSW, SSRW ..ot 16

0.6 OPETAONS .ioiiiiiiiiiiiii it oo 17
6.6.1 Arithmetic ODErators ..ooioocveoeeoreoieees e 17

0.0.2 Boolean ODETatOrS .ioiiveieveoeoe oo 17

6.6.3 Relational OpErators coocooooooiioiooooooee 17

7. CODING STRATEGY i 18
7.1 Extraction of Parallelism cooovvvmvvooii 18
7.2 Triggering COMSIANIS .ooivioiiiieoieeee oo 19

8. OPTIONS, RESERVED WORDS AND PREDEFINED FUNCTIONS 21
8.1 Compﬂer OPHONS Lo, 21
8.2 Reserved WOTIdS .ooooiioiioiiieeeeeoeoo T 22
8.3 Predefined Functions cocoooovooooorsooioo 23

9. SYNTAX DIAGRAMS i 24

DL1 User's Manual Page

[

1. INTRODUCTION

DL1 is an applicative, dataflow language which does most of its processing by the application
of (functional) operators to values to produce new values. This value oriented approach 18 highly
compatible with the run time mechanism of the target machine and is typical of languages designed
for dataflow muld-processors [7].

The language was designed to aid in the development of a dataflow multi-processor systerm
built {1,5] at Manchester University. The need for such a language was indicated by previous
research [2] in which a system to support object recognition programs was constructed. A compiler
for DL1 written in Pascal is available on the MUS computing system at Manchester University {3]
and an upgraded version runs under Unix in the Department of Communication and Electronic
Engineering RMIT, Melbourne.

Although DL1 is a high level textual language, its format allows for easy visualisation of the
object graph described by the source program. The syntax is similar to TDFL as proposed by Weng
[4]. Syntax charts are appended and many examples are given in the following sections.

Output from the compiler is in the form of an intermediate language (ITL) which consists of a
list of node descriptions and priming tokens. The form of this is specified in a previous document

[s1.

Recent work at RMIT [8] has led to the introduction of an extended node set and high level
language (DL1) features which take advantage of this. In particular, support for streams and
eager/lazy evaluation has been successfully incorporated into DL1.

DIL.1 User's Manual Page 3
2. STATEMENTS

There are five basic types of statement:

i Functional Definitions.
i 'SWITCH' Statements.
ii 'JOIN' Statements.

v PRIME' Statements.

v PROTECT' Statements.

2.1 The Functional Definition

In DL1, the equivalent of an imperative assignment statement is the functional definition. This
statement simply defines the relationship between one set of identifiers and another, it does not
imply any order of execution (control flow), nor does the "truth’ of the definition depend upon its
position in the program segment over which it applies (usually a syntactic element such as body")
or the time at which it executes. This freedom of interaction due (o a lack of side effects is what
allows statements to execute in parallel, constrained only by the data dependencies between them.

A DL1 program may be viewed as a high-level representation of a graph consisting of nodes
interconnected by arcs, a definition is the specification of one or more arcs in terms of some
expression involving other arcs. For example:)

A+B*2->C; (1
W - FUNCI(Y, 3, TRUE) -> X; (2)
GRAPH2(P*Q, NOT L), SIN(Z) ->R. 8, T, O; (3)

Note statement (3) which shows a multiple definition. In general there is no limit on the

number of outputs a function may have. The corresponding graphical forms produced by the DL1
compiler are: '

w Y Q L Z
o B ee
FUNC1 GRAPH?
C X R| s | T 0
Example 1 Example 2 Example 3
Figure 2.1.1

2.2 The 'SWITCH' Statement

A switch statement is used when the path of a computation depends upon some boolean
condition. It is a nonfunctional form since it does not produce a token on each output arc and
without careful use may lead to poorly formed graphs. It provides a type of data driven control by
explicitly defining a branching point in the dataflow graph and can be used to force conditional
statement execution by appropriately directing token traffic.

DL 1 User's Manual Page 4

The following are examples of how the switch statement is used to direct a set of tokens
depending on a boolean expression and the graph which is compiled for each statement.

switch B ornot (X =Y)then C-A, 3,D ->
D, E, nuli
else
null, F, G:

Figure 2.2.1

switch BOOL then X, Y,Z ->U, V, W:

X Y Z
U Vv W
Figure 2.2.2

switch BOOL then A, B -» elge C, D

DL User's Manual Page 5

A B
BOOL @ ﬁ
C D
Figure 2.2.3

Either side of the output specifications may be left out as in figures 2.2.2 and 2.2.3. This
textual form is far neater than if the full switch statement were employed by padding out the
output lists with null destinations.

2.3 The 'JOIN' Statement
Consider the following sets of statements and their compiled graph:

(A) switch BOOL then BOOL -> ENABLET else ENABLEF;
on ENABLET then EXPR1 -> 01;
on ENABLEF then EXPR2 -> (2
merge(01,02) -> RESULT;

BOOL EXPR1 EXPR2

CPoNG

RESULT

Figure 2.3.1

(B) switch A>B then A, B -> MAXA, null else null, MAXB:
merge (MAXA MAXRB) -> MAX;

DL1 User's Manual Page &

Figure 2.3.2

In both cases there is a selection of one of two expressions for the single output arc, depending
on a boolean condition, There is however a slight difference in the two cases. In the first example,
the coding method assumes that only one of the separate paths will receive a token for each boolean
token and also that the boolean will select the right path. In the second example, the coding method
relies on there being a token on each path; one of these is enabled while the other is absorbed. The
oldif and join statements provides a neat high-level form as follows:

(AA) oldif BOOL then either EXPR1 else EXPR2 -> RESULT;
(BB) oldif A>B then else A else B -> MAX;

OR
(AA) join BOOL then EXPRI else EXPR2 -> RESULT:

Note that oldif is provided only to maintain compatability with an older version of DL and is
only temporary, new programs should not use oldif. The Join form is 'either' by default. The
else’ form of oldif is a functional form form that is now provided more flexibly by the conditional
expression. The join statement on the other hand is a nonfunctional form designed for use with
switch to give conditional staterent execution. Great care must be taken by the user to account for
all tokens used and generated by the switch/join statement block if a well formed graph is to be
produced. Conditional expressions (if then else) are now provided by DL1 which guarantee both
well formed and determinate graphs.

2.4 The 'PRIME' Statement.

Graphs may be primed by using the prime statement. It may be used to specify a list of tokens
which are to be placed on a number of arcs.

prime 2,3 -> A;
The order in which the tokens are sent is the same as the order in which they appear in the list.
Named constants may be used in the token list. There may be more than one arc to which a
particular list is sent, in which case a copy of the priming tokens is sent to each arc, eg:

prime -1, Pl -> A B, ;

A list of prime statements may be strung together between a begin and an end in the
following manner:

prime
begin

D11 User's Manual _ Page 7

TRUE -> B1, B2;

-10, 0, 10 -> 1.2;

Pl, 7.2 -> R1, R2, R3;
end;

A shared subgraph may not be primed due to restrictions in the copy number mechanism.

2.5 The 'PROTECT' Statement.

Should a section of graph need to execute in isolation, it would be necessary to isolate it with a
set of PIP nodes at the inputs to the critical area and enable a new set of tokens to enter only when
all the (critical) results have been returned. The protect statement provides this facility in a
high-level form. For a critical area with inputs I1, 12, I3 and outputs 01, 02, the protection could
be invoked by writing:

protect I1, 12, I3 with O1, O2;

The corresponding graph is shown in figure 2.5.1:

I 2 13
() () (o
CRITICAL ARFA

- Figure 2.5.1

Note that the previous graph has issued a priming token in order to allow the first set of input
tokens to enter the critical area. Such initialisation could also be achieved using the following
construct:

01 ->0A; 02 > 0B;

when (OA, OB) -> ENABLE;

on ENABLE then 11, 12, I3 -> IA, IB, IC:
prime TRUE -> ENABLE:

When is a pre-defined function which returns a boolean true whenever a token appears on all
of its input arcs. When uses a node called PRS which emits a boolean TRUE on the presence of a
token of any type on both input arcs. A priming token is then needed to start the graph by allowing
in the first set of parameters.

The protect statemnent may only be used with arcs that are defined both as input and as output.
A new form of protect is now available which does not require any priming tokens and can thus
be used in a shared subgraph. This is achieved by replacing the PIP nodes with PRT nodes which
effectively behave as a primed PIP node. This scheme has the advantage of not only starting in an
empty state but also returning to an empty state upon completion. Graphs which have this property

DL1 User's Manual Page §

are said to be well formed and successful execution should result in the matching stores of the
multiprocessor being empty at the end of each run. This scheme not only saves on memory
utilisation but can be used to detect correct execution of a well formed graph.

DL1 User's Manual Page ©

3. SUBGRAPHS

A facility exists for the definition of subgraphs, the DL1 equivalent of procedures. Two types
of subgraph are supported by DL1 at the textual level. Ordinary subgraphs are macros which are
expanded when called whereas shared subgraphs are interfaced by means of special nodes and
allow recursion. The sharing mechanism is explained in [1]. Subgraphs may be defined inside
other subgraphs in a block structured manner. Ordinary subgraphs constitute a new texrual level
but their level of 'sharing’ is the same as the level of 'sharing’ of the block in which they are
defined.

3.1 Subgraph Declarations

An ordinary subgraph declaration specifies the name of the subgraph and the names of all the
input and output arcs and their types as follows:

subgraph EXAMPLE (IN1: real; IN2, IN3: integer) ->
(OUT1: real, integer; OUT2: boolean);

This subgraph may be called in the following manner:
EXAMPLE(SIN(X),1,2)->R, B;

In DL, a function is merely a subgraph (ordinary or shared) with one output arc, named or
unnamed, so the following subgraph:

subgraph MAX(A B: integer) -> (QUT: integer);
or
subgraph MAX(A,B: integer) : integer;

could be called as a factor in any expression:

Y * MAX(X,3) -> Z;

3.2 Shared Subgraphs

Recursive subgraphs must of necessity be shared subgraphs. These are declared with the key
word shared as in the following example:

shared subgraph FAC(L:integer) -> (RESULT:integer);

DL1 allows the definition of partial functions and so the user may specify the arcs which are to
be used as return address triggers (one for each output arc) by appending them to the end of the
parameter list in the function call. If they are omitted, as is the usual case, a suitable trigger is
generated in the same manner as when a trigger is needed for constants in an expression, i.e., from
the first arc named in the statement.

FAC(N)* FAC(R, TRIG) -> F;

Because of the copy number mechanism, a shared subgraph may in general be called a
maximum of 8§ times at any level of 'sharing'. However at the outermost level, this limit is 250 {2].
DLI now provides a compiler option which can be used to alter these so called topoccur and
maxoccur values (§ 8.1).

A program for calculating N1 could be:

shared subgraph FAC(Linteger) :integer;
begin
switch I>0thenI-> N else ONE:
on ONE then 1 -> R1

DI.1 User's Manual Page 10

N * FAC(N-1) -> R2;
merge(R1,R2) -> FAC;
end;

(nb. for 'safe’ code production, the merge line should be replaced by a Jjoin:-
join I >0 then either R2 else R1 -> FAC:
this will ensure correct results even when data is streamed through the above graph)

Enhancements to DL1 now allow conditional expressions of arbitrary arity which provide for
much more compact prgrams than switch/join combinations. An annotation that gives rise to
explicit lazy evaluation is also provided for both branches of a conditional expression. The
definition of FAC would now be as follows:-

shared subgraph FAC(L:iinteger):integer;

begin
if I>0thenI* FAC(- 1) else 1 -> FAC:
end; :

See section 5.2 for more details on the syntax and an explanation of the ™' symbol used
above.

3.3 Forward Referenced Subgraphs

Subgraphs may be forward referenced, but such a subgraph must be a shared subgraph. We
may thus write:

forward subgraph F(INT:integer) :integer;

shared subgraph S(IN1:integer) -> (OUTl:integer);
begin
F(IN1) -> OUTI;
end;

subgraph F;
begin
S(IN1) -> F;
end;

DL.1 User's Manual Page 11

4. CONSTANTS

Named constants may be declared at the start of each block and may be referred to within the
block in which they are declared.

constant
PI=3.14159;
KGTOLB =2.2:

BOOL1 = %F9A;

In the text, we may want to trigger a constant from a particular arc. DL1 provides a pre-defined
function for doing so called issue which takes two parameters, the first being the arc which is to
be used as a trigger and the second is the constant which is required. Using this, we could rewrite
the factorial subgraph as follows: ;

shared subgraph FAC(IN1l:integer) -> (OUT:integer);
begin
I->8S:
switch S>0 then S -> N else ONE;
merge(issue(ONE, 1), N¥*FAC(N-1)) -> QUT:
end;

DL1 User's Manual Page 12

5. EXPRESSIONS

Functions are often provided with multiple outputs in dataflow languages to increase their
power and flexibility [7], however many languages make only limited use of this fearure. The
original DL1 provides a good example of this, as the only way a multiple output subgraph could
be called was in the multiple definition assign2, which consisted of a call to the subgraph
followed by the definition of an output list.

The syntax of DL1 (§ 9), now includes several different types of expressions as well as the
powerful syntactic object expression list. The latest version provides a more unified svntax in
that expressions are generalised to multiple outputs and expression lists can be built up
incrementally from not just unary expressions but also from multipie output functions, including
subgraphs, conditionals and deferred expressions with multiple outputs. The comma operator
provides the means for building an expression list and allows recursive calls to expression list
itself, see the diagrams in section 9,

5.1 Deferred Expressions

Frequently when constructing a graph, we want to delay the output(s) of some expression until
the arrival of a data token on a particular arc. This action is usually the enabling of other tokens to
pass or the issuing of constants, This may be done by using a deferred expression as in the
following example:

on CONTROL then B - C, FUNC (D}, 3 ->E,F, G, H, T,

Figure 5.1.1

Fig 5.1.1 shows the compiled graph for the above functional definition involving a deferred
expression of arity five. The expression, in this case the arc CONTROL, is used as an enable
signal to the root of a duplicate tree. The ends of the duplicate tree are used to enable each
subexpression(list) using Pass-If-Present (PIP) nodes. These nodes transmit one token from arcO
on the arrival of a token of any type along arcl. A constant is generated by a PIP node with literal

~ data on input0,

3.2 Conditional Expressions, Lazy and Eager Evaluation

The conditional expression is similar in structure to the deferred expression, however selection

DIL1 User's Manuat Page 13

is made between two expressions of the same arity. The syntax for conditional expressions was
introduced in the discussion of section 3.2 and we rétum to that example here:

if 1>0then'T* FACI- 1) else 1 -> FAC;

The "' symbol in the conditional expression shown above enforces lazy evaluation of the true
branch. If eager evaluation was used here, then the recursion would continue until copy numbers
were exhausted. Eager evaluation is the default mode employed by the DL1 compiler. Lazy
evaluation is also recommended to prevent the execution of code which may lead to error
conditions such as nonterminating execution or negative square roots, etc. In addition, lazy
evaluation may be indicated where eager evaluation would otherwise lead to an excessive amount
of wasted computation (our multiprocessor is not an unlimited resource!).

Nested conditionals are allowed by the syntax and any combination of lazy and eager
evaluation is allowed. It is perfectly valid to use lazy evaluation for a nested conditional and indeed
nested lazy evaluation is both sensible and allowed, Tt is interesting to note that a similar form of
lazy evaluation could also be applied to the deferred expressions of the preceding section but its
introduction does not seem necessary at this stage. :

An examination of the syntax diagrams will reveal an ambiguity when an expression list begins
with the key symbols if or on. In this case it is not clear whether the parser will find a
conditional (deferred) expression or a factor. This ambiguity arises because the factor
unary conditional (deferred) uses the same syntax as the more general (multiple output)
expression list conditional (deferred) expression. The compiler currently resolves the
ambiguity in favour of expression list. This is the more general case and evaluation as a factor
can always be forced by parenthesizing the expression. This slight inconvenience was felt to be
more acceptable than introducing a special syntax for the factor form whilst still allowing the use of
conditionals and deferals in terms. More justification for the syntax used and alsc complete and
detailed code generation templates for DL1 can be found in [8]. Also, the intricacies of nested
eager/lazy evaluation combinations and some performance analyses are explained in that reference.

DL User's Manual Page 14

6. SYSTEM FUNCTIONS AND OPERATORS

The system supports a comprehensive set of functions and I/O handling facilities.

6.1 Mathematical Functions

The mathematical functions - (uniry minus), sin, cos, tan, arcsin, arccos, arctan, log,
In, exp, sqrt, sqr, abs, round and trunc are all provided. Other mathematical functions can
be built from these as required.

6.2 Logical Functions

In addition to the normal infix boolean operators, the functions called setbit, clearbit and
testbit are supported. These operations set, clear and test the individual bits of a bit-string. They
require two parameters, firstly the bit-string for manipulation and secondly the integer position
{starting at 0) of the particular bit.

A function for comparing the types of two inputs called compare exists and returns a boolean
true if the types of both input tokens are identical.

6.3 Input and Output

The functions read, write and writeln are supported and may be called from any position in
a graph or subgraph. They are implemented as functions. Write returns a copy of the last token
written after the operation has been performed. Read returns the data read (usually a character).
Read requires two parameters, the first of which is a device name and the second parameter is the
arc on which the request will appear. Write also requires the device name as the first parameter but
allows more then one arc to specify a list of data which is to be written. Care should be exercised in
the use of these functions to prevent writing or reading from two places in a graph at the same time.
This could result in a garbled output stream.

Ord and chr are provided for character manipulation.

6.4 Stream Functions

The current version of DL1 provides complete support for streams which are a natural’ data
structure provided by many dataflow programming languages. Weng [4] introduced the semantics
of stream based computation on a static dataflow machine and showed how streams could be used
to provide interprocess communications and to increase both available and achieved concurrency.
Other researchers have since added stream based computation to their dynamic dataflow
architectures. The RMIT target machine is a hybrid architecture which supports both static (queuned)
and dynamic (coloured) run-time environments. In such an architecture benefits from streams are
achieved through enhanced use of static graph code (pipelining) and through significantly more
powerful semantics of high level DL1 programs.

Stream 'variables' are indicated by identifiers beginning with an underscore. Valid stream
identifiers include :-

_this_is_a stream
X1
__List3

Predefined funtions which provide streafn support are:- bracket, unbracket, head, tail,
get, empty and cons. Bracket returns a copy of the input data followed by a
‘Stream-end-token'. Unbracket absorbs all ‘Stream-end-tokens' passing through it. The new

DL1 User's Manual Page 15

stream functions head, tail, get, empty and cons allow for easier and safer stream
manipulation. Get returns both the head and tail of a stream and is slightly more efficient than a
head/tail pair. Cons allows for non-strict stream creation by concatinating a simple element and a
stream element. Empty returns true or false when applied to a stream, it should be used to test
streams before applying head, get or tail since these fanctions are not defined for empty streams.
In addition, implicit stream support is provided by many other DL1 primitives including merging,
protecting, shared subgraph entry and exit, etc.. :

A graph to sum the elements in a stream could be:-

shared subgraph stream_sum(_input:integer):integer;

begin
if empty(_input)
then 0
else * head(_input) + stream_sum(tail(_input))
-> strearn_sum;
end;

and to sum the elements of two streams to form a new stream:-

shared subgraph _add(_inl, _in2: integer):integer;

begin
if empty(_inl) or empty(_in2)
then]
else * cons(head(_inl) + head(_in2),_add(tail(_in1), tail(_in2)})
-> _add;
end;

where the symbol '] is the stream-end symbol and denotes an empty stream when used alone. The
"' symbol denotes lazy evaluation of the else branch. Note that this subgraph is only ‘clean' if
the input streams are of identical length.

6.5 Miscellaneous Functions

6.5.1 MERGE

The merge function is used to explicitly merge several arcs together. It returns the arc to
which all the inputs have been merged. It takes two or more parameters of any type. The merging
is non-deterministic in nature and is done in the communications network of the host
multiprocessor. No object code is actually compiled for a call to this function.

6.5.2 SETDEST and LABEL

Label returns the literal destination of its one parameter which is an arc. Because of its nature,
the function cannot be used to generate named destination constants. This is intentional to stop side
effects which may arise from sending tokens into subgraphs other than as formal parameters.
Setdest sends a copy of the first argument to the address given by the second argument. An
example of the use of these functions follows:

if BOOL then label(ARCA) else iabel(BRANCH) -> DESTIN,;
setdest{DATA, DESTN) -> nuil;

6.5.3 ISSUE

Before unary deferred expressions became available as factors, the DL1 programmer
could use the issue function as a factor in an expression. Its use is now only required to maintain
compatability with old source code. It is expected that issue will disappear from DL in the future.

DL1 User's Manual Page 16

Compare:
on A then TRUE ->11;
on B then 5 -> 12;
merge(11, I2) -> 01;
with:
merge(issue(A, TRUE), issue(B,5)) -> O1;

the new syntax allows this definition to be expressed as:

merge(on A then TRUE endon , on B then 5 endon) -> O1;

6.5.4 STORE

This function is implemented using the storage (STO) node. Tt takes two inputs. A token
arriving on arc(is stored. If a token has already been stored then it is replaced by the new token.

A token arriving on arc] results in a copy of the stored token being sent out as a result. If there

is no token stored then an error is indicated. The store function represents this node. Its two
parameters represent arcQ and arc] of the STO node respectively.

6.5.5 YIELD and SETCOPY
Yield and setcopy plant a YL.C and STC node respectively. These functions can be used to

control the context of a particular code segment instantiation as is typically required by a resource
sharer subgraph [6].

6.5.6 SSR, SSW and SSRW

Structure read (SSR), structure write (SSW) and structure read before write (SSRW) provide
access to a stored, as distinet form transmitted, vector of stored tokens. The tokens may be of
mixed types, the type being defined by the token written 1o any given vector element. More
complex structures may be defined using techniques of mapping complex objects in a conventional
linearly addressed store. SSR has one parameter being the index. SSW and SSRW have two
parameters the first of which is the value to be written and the second the index. The functions
return the value written or read.

6.6 Operators
6.6.1 Arithmetic Operators

Diadic arithmetic operators provided by DLI are +, -, *, /, div, mod, », **_ These have their
usual infix form. The last two are for raising to the power.

' uses logs to achieve the result and may have two expressions as operands.
**! s for raising to an integer power and must be followead by a positive integer constant.

Consider the following statements and their compiled code (figure 6.6.1.1):-

(A +B) "(GAMMA - 1) -> 01 01*5.>02

DL1 User's Manual Page 17

LOG

EXP

0!

Figure 6.6.1.1

6.6.2 Boolean Operators
The operators and, or, xor, eqv, imp and not are all provided with their usual meanings.

Imp provides the logical operation of implies'.

6.6.3 Relational Operators

< <ﬂ' !=I l<>l |>mf and I>!

These are the relational operators, again with their usual meanings.

DL User's Manual Page 18

7. CODING STRATEGY

7.1 Extraction of Parallelism

In order to achieve a high degree of parallelism in the evaluation of a high level expression, the
compiler generates balanced trees for the operations of addition, subtraction, OR, multiplication,
division and AND :-

A-B+C-D+E-F+G-H -> X;

X

Figure 7.1.1
A/B*C/D*EfF -> X;

X

Figure 7.1.2

The compiler thus relieves the programmer of extracting the parallelism by the use of brackets. -
In the first example the following expression would have been required: :

DL.1 User's Manual Page 19

(A+CO)+E+G)-((B+D)+(F+H)) -> X;

.. 1o achieve this parallelism.

7.2 Triggering Constants

Not all primitive nodes may have lteral data associated with their node descriptions. In such
cases the constants must be generated using PIP nodes with the necessary literal on arc(. In
parsing an expression a strategy is used for deriving the trigger needed to set off the required
constants.

The DL compiler uses the first arc name encountered in a statement for the triggering of all the
constants in that particular statement. If the expression is 'gated’ (eg. a lazy if branch), then the
gate is used to trigger the constants. A duplicate tree is then planted from: this trigger and used to set
off the required constants. Constants are planted as literals in two-input nodes where appropriate.

SIN(0.5)*6 - A + ORD('C'Y2 -> X;

Figure 7.2.1

The above assignment and compiled code illustrates the method of generating constants.
Should a statement be encountered which has no suitable trigger, the duplicate tree is primed with a
single token to generate the necessary constants and an error is indicated.

SIN(0.5y*6 -> OUT;

DL1 User's Manuat Page 20

0.5
PIP
SIN
6
OuUT
Figure 7.2.2

This is to be discouraged as a means of priming graphs however and the prime statement
should be used instead.

DL1 User's Manual Page 21
8. OPTIONS, RESERVED WORDS AND PREDEFINED FUNCTIONS
8.1 Compiler Options

DL1 allows several options to be present in the source file which provide contro! over code
production and compile time statistics display. Options are imbedded between brackets. For
example, to provide run time tracing and an informative but brief compile time display, the option
string [x+,k+,i+] could be used.

option/default effect
b- byte node addressing
c+ compressed ITL listing
d- determinate code production
e+ €ITOT monitoring
f- finegrain for exponentiation (LNE/MUL vs PWR)
h- heap cheaking for debugging
i- display of arc usage
k- compile time information
1+ compiler generated listing
m+ use new 'O’ data format (<maxocc.oce>)
08,8 top and max occurrence for shared subgraphs
T+ constant reduction for literals
$ - scanner output for debugging
t- type checking
W - extended node set for code production
X - run time trace between [x+] and [x-]

[0:127] element range for following node assignments

DL.1 User's Manual Page 22

8.2 Reserved Words

The following reserved words have special meanings to the compiier and are not available for
any other purpose.

graph delimiters

program, constant, forward, shared, subgraph, begin, end

statement delimiters

switch, join, oldif, protect, prime

expression delimiters

if, then , else, either, endif, on, endon, with

predefined constants

true, false, eos {or T, end of stream), null (the token bucket)

type identifiers

any, boolean, char, copy, dest, integer, real, stream

operators

and, or, eqv, xor (nqv), not, mod, div, label

i/0 streams

input, output, bend, elbow, twist, waist, arip, swivel

DL1 User's Manual Page 23

8.3 Predefined Functions

The following predefined functions are provided by DL.1:

arithmetic
abs, In, exp, log, pwr, round, trunc, sqr, sqrt,
sin, Cos, tan, arccos, arcsin, arctan

bit string

clearbit, setbit, testbit

character

chr, ord

ifo

read, current, write, writeln, las

stream

head, tail, get, empty, cons, bracket, unbracket

misc

compare, first, issue, merge, pred, succ, store, when,
setdest, setcopy, yield,
$ST,S5W,ssm

D11 User's Manual Page 24

9. Synfax Diagrams

programm

PROGRAM

ident O[block __O

block
CONSTANT ident /:\ constant

\ (_/

N

4 _/

N

< \w/ ™
A forward.decl N
N subgraph.decl /

statement, list

forward.decl

_ FORWARD SUBGRAPH)_ ident imerface |

subgraph.decl

SHARED

SUBGRAPH)_ ident 1 interface

<« block)
./

DIL1 User's Manuai Page 25

interface
param. list @ param.fist
type.list
param.list aram.elem
‘@t paramelem |] id.list _O_ typedist L4
id. list type.Jist
—T ident »> type
O) i O
ident
Lype
letter > ANY
_Q D

letter BOOLEAN

digit CHAR

DEST

1)
AL

INTEGER

REA

STREAM

DIL.1 User's Manual

statement.list

statement

Statement

()
/

functional.definition

switch.statement

join.statement

protect.statement

(T

prime.statement

U

DL.1 User's Manual

functional.definition

expr.list

©

output.list e

switch.statement

Page 27

(SWITCH) expr (THEN)_ expr.list <:>

output.list

join.statement

ELSI@_ output.list »

<J01N } expr _(THEN))

(expr.list _{ELSE)_

expr.list _®_

protect.statement

output.ist | s

PROTECT | arc.list

prime.statement

PRIME BEGIN

arc.list L g

)

N

primeline

primeline l{END)—7_>
primeline

constant.list (:) arc.list

DL User's Manual

output

—{ ident »
literal.dest
literal dest
constant _O_ constant constant
(€lement) node) (mput)
N\
expression lst [7_/]
expr
N 4

N subgraph.call %

N conditional.expr | /]

N\ deferred.expr |/
conditional.expr

expr.list

(IF) expr _GHEN)@/

expr.list

deferred.expr

_{ON)__ expr _CI‘HEN)___ expr.list

DL1 User's Manual Page 29

expression

simple.expression

@c@c@@w@w

simple.expression tenm

term _ factorl

factorl factor?

factor2 —| factor3
7 ™~ > =

&.@_/ constant @

factor3

D11 User's Mangal Page 20

factor3

arc

< 7

\ | constant /

e Wl - B y
Y S)

NOT factor3 : Y

_@ 4 arc /N Y
—/ /

\ subgraph.call /

N unary.conditional _/

\w unary.deferred J

subgraph.call

ident O expr.list (O >
\/ ./

unarv.conditional unary.deferred

conditional.expr | .. g .' deferred.expr |

DL1 User's Manual Page 31

References

(1]

{2]

(4]

£3]

(6]

(7]

[8]

G. K. Egan, A Study of Data-flow: Its Application to Decentralised Control, Ph.D.
Thesis, Dept. of Computer Science, University of Manchester, 1979,

C. P. Richardson, Object Recognition Using a Data-flow machine: Algorithms for a
Laser Range-Finder, M.Sc. dissertation, Dept. of Computer Science, Univerity of
Manchester, 1979,

R. N, Ibbet and P. C. Capon, The Development of the MUS Computer System, CACM
Vol 21, No 1, Jan 1978,

K. S. Weng, Stream-oriented Compytation in Recursive Data-flow Schemas. Technical
memo No 68, Laboratory for Computer Science, Massachussetts Institute of
Technology, Oct 1975.

G. K. Egan, FLO: A decentralised Data-flow svstem. Internal Document, Dept, of
Computer Science, University of Manchester, 1980.

C. P. Richardson, Manipulator Control Using a Dataflow Machine, Ph.D. Thesis,
Dept. of Computer Science, Univerity of Manchester, 1981,

W. B. Ackerman, Data Flow Languages, Proceedings of the National Computer
Conference, pp 1087-95, Vol 48, 1979,

M. W. Rawling, Dataflow: An Implementation and Analysis, M.Eng Thesis, to be
submitted, Dept. of Communication and Electronic Engineering, RMIT, 1987.

