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ABSTRACT:

This paper considers a solution to the school timetabling problem. The timetabling
problem involves scheduling a number of tuples, each consisting of class, a teacher, a
subject and a room, to a fixed number of time slots. A Monte Carlo scheme called
simulated annealing is used as an optimisation technique. The paper introduces the
timetabling problem, and then describes the simulated annealing method. Annealing is then
applied to the timetabling problem. A prototype timetabling environment is described
followed by some experimental results. A parallel algorithm which can be implemented on
a multiprocessor is presented. This algorithm can provide a faster solution than the
equivalent sequential algorithm. Some further experimental results are given.
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1. INTRODUCTION

This paper considers a solution to the school timetabling problem. The timetabling problem
involves scheduling a number of tuples, each consisting of class, a teacher, a subject and a room, to
a fixed number of time slots. A number of such tuples may be scheduled in the same time slot
providing:

1) no class appears more than once in the time slot,
2) no teacher appears more than once in a time slot and
3) no room is used more than once in a time slot.

This problem has been well studied in the past and some limited success has been reported. An
exhaustive search is impraticable because there are too many alternatives. Modelling the problem as
an integer programming problem has not been particularly successful because there are too many
variables and constraints {2,3,4,6,7,8]. Heuristic searches have had reasonable success, but it is
hard to form a heuristic that performs as well as an experienced human [1]. Monte Carlo techniques
have been used to a limited extent [5,9]. In this paper we examine the use of a Monte Carlo scheme
called simulated annealing as an optimisation technique. We introduce the timetabling problem,
followed by the simuiated annealing technique. We then show how annealing can be applied to the
timetabling problem. We describe a prototype timetabling environment, and give some experimental
results. The timetabling package which has been developed is based on the theory given in this
paper. It can be used by timetable planners in preparing a usable schedule of classes and teachers.
The data is entered as a set of requirements and constraints, as illustrated in section 11. The package
manipulates the positions of the various classes until it has minimised the number of clashes in the
timetable. The output is either a valid schedule, or one which is as close as possible to a valid
schedule. The various input constraints are described in section 5.

A parallel algorithm which can be implemented on a multiprocessor is presented. This algorithm
can provide a faster solution than the equivalent sequential algorithm. Some further experimental
resuits are given.

The timetabling problem is important not only because many schools and universities produce
timetables each year, but also because it is just one of many scheduling problems. An effective
solution to the timetabling problem could be applied to other constraint based scheduling tasks. The
parallelisation of the serial algorithm could be effective as a technique for other simulated annealing
algorithms,

2. TIMETABLING PROBLEM

The problem of creating a valid fimetable involves scheduling classes, teachers and rooms in
such a way that no teacher; class or room is used more than once per period. For example, if a class
must meet twice a week, then it must be placed in two different periods to avoid a clash. The
timetable is to be dismibuted across a fixed number of periods per week. A class consists of a
number of students. We will assume that students have already been grouped into classes. Initiaily
we consider classes to be disjoint, that is, they have no students in common. In this scheme, a
correct timetable is one in which a class can be scheduled concurrently with any other class. Later in
the paper this restriction will be relaxed to cater for high schools and Universities in which students
can take many options. In each period a class is taught a subjecr. It is possible for a subject to
appear more than once in a period. A particular combination of a teacher, a subject, a room and a
class is called an element. An element may be required more than once per week. The combination
of an element and a frequency is called a reguirement. Thus, the timetabling problem can be phrased
as scheduling a number of requirements such that a requirement, teacher, class or room does not
appear more than once per period. The task of forming requirements is handled separately and will
not be discussed further. A sample timetable is shown in Figure 1. A CLASS CLASH is shown in
period 1 Monday. In this period class 1 appears more than once. There is no scheduling problem
between Periods 1 and 2 because they are different time slots.

It is possible to define an objecrive or cost function for evaluating a given timetable. This
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function calculates the number of clashes in any given timetable. An acceptable timetable has a cost
of 0. The cost of any period is of the sum of three components:

1 a class cost,
2) a teacher cost and
3 a room Cost.

The class cost is the number of times each of the classes in the period appears in that period,
less one if it is greater than zero. Thus, if a class appears no times or once in a period then the cost
of that class is zero. If it appears many times the the class cost for that class is the number of times
less one. The class cost for a period is the sum of all class costs. The same computation applies for
teachers and rooms.
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Figure 1 - A sample timetable

The cost of the total timetable is the sum of the period costs.

3. SIMULATED ANNEALING

Simulated annealing is a Monte-Carlo technique which can be used to find solutions to
optimisation problems. A good review of the theory and practice can be found in [10]. The
technique simulates the cooling of a collection of hot vibrating atoms. When the atoms are at a high
temperature they are free to move around, and tend to move with random displacements. However,
as the mass cools the inter-particle bonds force the atoms together. When the mass is cool, no
movement is possible, and the configuration is frozen. If the mass is cooled quickly then the final
system energy may not be minimal. However, if it is cooled slowly, then the final energy may be
the lowest possible. At any given temperature a new configuration of atoms is accepted if the system
energy is lowered. However, if the energy is higher, then the configuration is accepted only if the
probability of such an increase is lower than that expected at the given temperature. This probability
is given by P(AE) = e-AE/KT, where K is Boltzmann's constant.

By modelling optimisation problems as a set of randomly vibrating atoms, it is possible to find
optimal, or sub-optimal, solutions. Many optimisation problems can be considered as a number of
objects which need to be scheduled such that an objective function is minimised. The vibrating
atoms are replaced by the objects, and the value of the objective function replaces the system
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energy. An initial schedule is created by randomly scheduling the objects, and an initial cost (¢g) and
temperature (Tp) are computed. Subsequent permutations are created by randomly choosing two

objects, interchanging them, and computing a change in cost (Ac). If Ac € 0 then the change is
accepted. However, if Ac > ( then the probability of that change is calculated,

P(Ac) = ¢ -A¢/T,

If the probability is greater than a randomly selected value in the range (0,1) then the change is
accepted. After a number of successful permutations the temperature is decreased by a cooling rate,
R, such that T, = Ty, * R,

One of the advantages of simulated annealing over algorithms which always seek a better
solutton (hill climbing algorithms) is that simulated annealing less likely to get caught in local
minima, because the costcan increase as well as decrease.

4. APPLYING SA TO THE TIMETABLING PROBLEM
4.1 Technique

The application of simulated annealing to the timetabling problem is relatively straight forward.
The atoms are replaced by elements. The system energy is replaced by the timetable cost. An initial
allocation is made in which elements are placed in a randomly chosen period. The initial cost and an
initial temperature are computed. The cost is used to reflect the quality of the timetable, just as the
system energy reflects the quality of a substance being annealed. The temperature is used to control
the probability of an increase in cost and relates to the temperature of a physical substance. At each
iteration a period is chosen at random, called the from period, and an element randomly selected
from that period. Another period is chosen at random, called the to period. The change in cost is
calculated from two components:

1) The cost of removing the element from the from period
2)  The cost of inserting the element in the to period.

The change in cost is the difference of these two components, The element is moved if the
change in cost is accepted, either because it lowers the system cost, or the increase is allowed at the
current temperature. Unlike the ¢lassic simulated annealing technique which would actually swap
two elements, an element is removed from one period and placed into another. This allows the
number of elements in one period to increase or decrease, and for ail periods to a contain different
numbers of elements. If two elements were swapped then it would not be possibie to change the
number of elements per period.

The cost of removing an element consists of a class cost, a teacher cost and a room cost.
Likewise, the cost of inserting an element consists of a class cost, a teacher cost and a room cost. If
after removing an element from a period the number of occurrences of that class is > 0, then the
class cost saving is 1. Similarly, if there are one or more occurrences of the teacher after that teacher
has been removed then the teacher saving is 1. This technique also applies for rooms. The cost of
inserting an element can be calculated using the same basic rechnique. In this way it is possible to
determine the change in cost incrementally without recalculating the cost of the entire timetable. This
attribute is particularly useful when the parallel version of the algorithm is implemented.

Since the simulated annealing algorithm relies on a random set of permutations it cannot
guarantee that the ue minimum cost value is actually found, or that two different annealing runs
will yield the same solution. It is possible to guarantee reproducible results by using a
pseudo-random number generator so that the same random sequence is generated for a given seed
value. Thus, different sequences can be generated by starting the random number generator with a
different seed value each time. It is often necessary to perform multiple runs to determine whether
the cost is the best that can be achieved. Some of the results presented in this paper were produced
by running the annealing program many times, each time with a different random number seed. The
global minimum cost solution was then chosen.
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4.2 Run Time Parameters

There are a number of parameters which govern the cooling schedule. A good description of
these can be found in [10]. The following values must be computed:

(1)  Starting temperature

(2)  When to decrease the temperature - MAXSWAPS and MAXSUCCESSSWAPS
(3)  Termination of Run

4y  Cooling schedule - COOLINGRATE

The initial starting temperature should be sufficiently high to allow most increased in cost. A
technique for choosing the initial temperature is described in [11], and involves computing the
standard deviation in the changes in cost over a number of swaps. This technique allows the initial
temperature to be high enough to allow most swaps, but not too high that many unnecessary swaps
are required.

Each time the temperature is decreased a number of swaps is attempted. It is necessary to limit
the number of unsuccessful swaps at each temperature as well as the number of successful swaps.
These two limits are called MAXSWAPS and MAXSUCCESSSWAPS, and are chosen to be
proportional to the number of elements. Thus, as the problem grows, the time allowed to find a
solution also increases. At any given temperature, the number of successful swaps is limited to
MAXSUCCESSSWAPS. The total number of successful and unsuccessful swaps is limited to
MAXSWAPS.

There are two conditions for terminating a run. The first is if the cost becomes zero. In this case
an ideal timetable has been computed, and there is no point continuing. The second condition arises
if the cost has not changed for a certain number of iterations. The program implemented allows an
arbitrary number of temperature changes without a change in cost before it concludes that the
configuration has frozen.

A simple cooling schedule is chosen. A new temperature is computed by multiplying a
COOLINGRATE by the current temperature.

5. PRACTICAL CONSIDERATIONS

The are a number of practical problems associated with the simple timetable model described in
the previous section. These are:

D It cannot handle classes which have students in common,

2) It is not flexible in assigning rooms to elements,

3) It does not allow multiple periods,

4) It does not allow one class to be scheduled always with another class.
5) It does not allow one type of clash to be more important than another,

5.1 Class Clashes

In the simple model classes are assumed not to clash with any other class. Thus, the cost of
scheduling a class to a period can be calculated by checking if that class is already scheduled in the
period (likewise for the teacher and the room). Such an assumption is impracticable in real
timetables. For example, year 7 may be divided into three groups, 7A, 7B and 7C. Each group
contains different students, and thus they can be scheduled together. However, when the subject
ART is taught to year 7 it may be taught to some selected students from 7A, 7B and 7C. If we call

thisC class 7D, then there is no way of indicating that 7D cannot be taught simultaneously with A, B
or C.

The solution involves maintaining a class clash list for each class, and using this information in
computing the cost of a period. For example, the cost should reflect that if 7D appears in the same
period as 7A then a clash has occured. This clash information can be inciuded in the stmple cost
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function relatively easily.
5.2 Room Assignment

Static assignment of rooms to requirements removes some of the flexibility in scheduling the
timetable. For example, if a school has a number of rooms each of which hold 30 students, then
there is no reason to statically assign a particular class, subject and teacher to any one room. It
would be possible to simply choose one room from those available. This problem is solved by
using room groups. A requirement is assigned to a room group, which may contain more than one
room. When the element is scheduled to a period, the room cost does not increase until all of the
rooms in the room group have been assigned. Thus, if there are 20 rooms which can hold 30
students each, then the room cost does not increase for this room group until 21 classes are
scheduled for the group. It is not necessary to actually assign the rooms when the element is
scheduled, but simply to decrement the number available in the group. The rooms can then be
assigned once a feasible timetable has been generated.

Flexible room assignment may be performed in which a room is contained in more than one
room group. In this way, it is possible to request that classes which need special purpose rooms
receive them, but if the special purpose rooms are not required in a period then they can be used for
general subjects. The only added complication with this operation is that a requirement which
requires a room which is also in a room group needs to aiso claim a room from the room group
when it is scheduled.

5.3 Multiple Periods

Practical timetables often call for a class to be scheduled over more than one consecutive time
period. For example, practical subjects often need 2 or 3 hours of contiguous time. The simple
model described takes no account of multiple period assignments; a perfect timetable is one in which
there are no clashes. It is possible to include multiple periods by introducing a cost measure which
increases the timetable cost if the periods of a multiple period are not consecutive. In this way a
perfect timetable not only has no clashes, but also all multiple period assignments are satisfied. If a
new configuration wishes to split a multiple period request, then it is only accepted if the change in
cost is allowed at the given temperature.

5.4 Groups of Requirements

The complexity of the scheduling task can be greatly reduced by removing unnecessary
requirements. If it is known that a set of classes are always scheduled together in the same pericd,
then there is no need to have a separate requirement for each one. For example, a year level may
take a number of art/craft subjects, each of which is a separate class. However, such elements ate
always scheduled together in the same period because they involve a complete set of students. While
the cost function will indicate that such requirements can be scheduled together, there is no fixed
requirement that they are. If the scheduler knows to always allocate a group of requirements to the
same period, then the entire group is moved when one is moved. The change in cost reflects moving
all of the individual elements.

5.5 Weighted Cost Function

When creating a timetable certain scheduling requirements may be more important than others.
For example, it may be more important that no class appears more than once in a period than a room
is used more than once, because it may be possible to find a spare room after the timetable has been
generated. This preference can be expressed by weighting the components of the cost function.
Thus, the cost function is the sum of the weighted cost values for class cost, teacher COSt, TOoOm cost
and multiple period cost. If any one component is more important than another then the weight can
be increased appropriately.
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5.6 Preferences for periods

It may be necessary to express a preference that a requirement appear in a particular period, or
range of periods. This information can be easily added into the cost function, by including a cost
component which reflects how close a requirement is to its desired period. When a requirement is
close to its preferred period the cost is low, however, as the requirement moves further from the
period the cost is increased. A preference for more than one period may be indicated, so that a
number of preferred times can be nominated. This cost component can be computed very quickly by
using a statically computed cost table, which indicates the cost of placing a requirement in every
period of the dmetable.

5.7 Limiting number of periods faught

Many schools wish to express a preference that a teacher is not scheduled more than a certain
number of times in a given period range. For example, a particular teacher may not wish to teach
more than 3 period on a Friday. This request can be easily incorporated into the cost function by
keeping track of how many times a teacher has been scheduled in a given period. The cost
computation requires more than one period of the teacher clash array to be consulted when a
requirement is moved.

6. SOME EXPERIMENTAL RESULTS

In this section we show some results of the application of simulated annealing to some randomly
constructed data and some real data from an Australian High School. The simulated annealing
algorithm has been implemented with a 1300 line Pascal program. The complexity of the code is
much less than an equivalent (incomplete) heuristic search program which required about 4000 lines
of Pascal code [12].

The program was tested with two types of data. One type is generated automatically by a
program which creates a random timetable with zero cost. The timetable is generated by choosing a
class, teacher and room combination from a random pool, and then placing it in a period which does
not increase the cost of the configuration. This technique means that there is always ar least one
solution to the timetable, although there may be more than one legal solution.

The second type of data was taken from an existing timetable in a secondary high school. This
data was much more complex, and needed room groups, clashing classes and groups of
requirements. The results of these experiments are summarised in Table 1. Timetables 1 through 9
are random timetables with no class clashes, multiple periods or grouped requirements. Timetables
1 through 5 do not use grouped rooms, that is, each room group only has one room available.
Timetables 6 through 9 use grouped rooms, as described in the notes below Table 1. Timetable 10
was taken from real high school . Timetable 10 used groups of requirements, clashing classes and
TOOMm groups.

It is difficult to design a measure of timetable complexity because there are so many variables. In
general, the complexity is proportional to the number of elements, and inversely proportional to the
numbers of rooms, teachers and classes, although the function is clearly not linear. However,
grouped requirements, room groups and class clash lists all alter the complexity of any given data
set. Consequently, a simple and effective method of computing the complexity of each of these
timetables 1s to calculate the initial cost. Since the initial configuration is random, the initial cost
gives quite a good measure of "how hard the timetable is to schedule". If there is a great degree of
flexibility in the possible assignments, then the initial cost is likely to be low. However, if there is
very little freedom, the initial cost will be high. The use of initial cost as a complexity measure
automatically takes into account the number of elements to be scheduled, the number of periods
available, the number of teachers, rooms and classes, and the difficulty of scheduling classes which
clash with each other,



Solving Timetables using Simulated Annealing Page 7

Test  Number Number Number Number  Initial  Final Cooling  Execution
Data  Teachers Rooms Classes Elements Cost Cost Rate Time on
Set Sun 3/60
1 15 15 (a) 153 100 32 0 0.9 11 secs
2 15 15 () 15 130 62 0 0.9 26  secs
3 15 15 f(ay 15 200 116 0 0.9 50 secs
4 15 15 (@ 15 256 177 0 3.9 89  secs
5 15 15 (@) 15 300 229 0 0.9 131  secs
6 36 24 (by 46 400 186 0 0.9 140  secs
7 36 24 (b)y 46 600 344 0 0.9 238  secs
8 30 24 (b)) 30 600 410 0 0.9 296  secs
9 20 24 (b)) 20 600 506 3 .99 5548  secs
10 37 24 (b) 101 757 810 0 (.95 14 hours
Notes:

{a) indicates that all room groups contained only I room

b indicates that there were 3 rooms in one group, 14 rooms in another group and all other

groups contained one room.
All imetables contained 30 periods.

Table 1 - Results of Test Data

The results are shown in Table 1. The number of periods per week, teachers, rooms, classes
and elements is shown for each data set. The initial cost gives an indication of the complexity of the
schedule. The final cost indicates whether the program found a correct solution. For the randomly
constructed data, the final cost should be zero. The cooling rate shows how quickly the temperature
was decreased. The execution time on a Sun 3/60 computer is shown for comparison with other
scheduling techniques.

The results show that increasing the number of elements for a given number of classes, rooms
and teachers increased the complexity of the problem. In all cases more elements produced a higher
inifial cost. The numbers used in tests 1 through 5 were thought realistic for a small school
timetable, and those for tests 6 through 9 for a typical high school. Unfortunately, the cost of Test
Data 9 could only be reduced to 3, and the true minimum (0) could not be found. However, this test
data is extremely complex, and whilst an optimum value is possible, the data has very little
flexibility in the way it must be scheduled. (This is evident because 20 classes with 30 periods has a
theoretical maximum of 600 requirements for a zero cost solution. Further, there are only 20
teachers, and 24 rooms.) Data set 10 reached its theoretical minimum cost, but only with a very long
cooling cycle. Many solutions with non zero costs could be found with much faster cooling cycles.
For example, a timetable with a few clashes could be found in a few hours using a faster cooling
Tate.

Table 2 contains another set of set data and results. This data was constructed using the random
timetable builder program, but the parameters were taken from a number of real school timetables
produced in [1]. The only information available was the number of elements, teachers, classes and
rooms for each data set. The actual distribution was not available. The percentage of correctly
scheduled elements for the heuristic used in 1] is shown, as well as the percentage achieved using
simulated annealing. One complication which arises from not having the actual data is that the
number of elements used in the real school data is often larger than theoretically possible given the
number of classes, teachers and rooms. For example, it is not possible to have a cost free imetable
of 860 elements as in data set 1 with only 26 classes and 30 periods, because there are only 780
unique class assignments. In practice the actual number can be larger than the theoretical limit
because some of the elements contain null classes, teachers and rooms. These null assignments do
not require an actual class, teacher or room, and therefore do not generate any clashes. Because this
information was not available, a random timetable was generated with the theoretical maximum
number of possible elements in such cases. These are shown in a separate column of the table. The
table indicates that simulated annealing performed at least as well as the heuristic in the paper, if not
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better. It should also be noted that each set of test data was only processed once. Thus, those
solutions which did not have zero cost may not be the lowest possible cost. However, the
comparison should be treated carefully because different data was used in the simulated annealing
test data.

Test  Number Number Number Number Actual Inidal Final % deGans % annealing
Data  Teachers Rooms Classes Elements Flements Cost Cost assigned  assigned
Set

1 44 28 26 860 780 723 1 99.4 99.8
2 75 39 72 1504 1279 1279 0 97.6 100.0
3 67 61 31 1463 930 718 0 94.2 100.0
4 58 39 27 1053 810 670 0 89.3 100.0
3 24 20 15 430 450 407 0 99.6 100.0
6 20 11 11 340 330 318 0 98.2 100.0
7 34 43 31 943 930 898 4 96.7 99.5
8 47 56 55 1368 1398 1372 5 99.2 99.6
9 20 30 25 588 588 550 0 99.2 100.0
10 71 48 41 1350 1230 1163 0 98.7 100.0
11 51 54 44 1302 1302 1312 I 99.8 99.9
12 77 58 48 1593 1440 1312 0 99 .4 100.0
13 93 107 111 2252 2252 1922 0 68.3 106.0
14 44 19 28 484 484 339 0 97.3 100.0
15 71 52 33 1451 950 816 0 94.1 100.0
16 63 37 42 1114 1110 1029 0 96.6 106.0
17 65 59 91 1567 1567 1343 0 98.3 100.0
18 22 24 17 454 454 378 0 99.3 100.0
19 58 43 31 1029 930 817 0 97.4 100.0
20 65 51 29 1348 870 682 0 98.0 100.0
21 28 15 12 360 360 306 0

91.9 100.0

Note: All data was only annealed once
30 Periods per week.

Table 2 - Comparison of deGans results to simulated annealing

Graph 1 shows a typical cooling schedule, in which the cost is plotted against the iteration
count. This shows the cost decreasing, with increases allowed at high temperatures. At low
temperatures (high iteration counts) the probability of an increase in cost is too low, and the
algorithm resorts to seeking decreases in cost only.
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Graph 1 - Plot of cost vs iteration count
7. A PARALLEL ALGORITHM

7.1 Simple Algorithm

The results shown in the previous section illustrate that while effective, simulated annealing can
be extremely slow (for exarmple, data set 10 of Table 1 took 14 hours of processor time). The speed
of the simulated annealing algorithm described can be improved by using a parallel algorithm rather
than a serial one. In the serial algorithm, each permutation of the elements is performed sequentially,
and the new configuration either accepted or rejected. A new configuration is not generated until the
previous one is performed. However, it is possible to perform multiple permutations concurrently,
providing each permutation is independent of the other permutations.

A concurrent algorithm can be implemented by assigning muitiple processes to the task of
permuting the timetable. The timetable must be held in a shared memory area accessible to ail
processes. Each process independently chooses an element to move (from a from period), and a to
period. In order to prevent other processes from choosing the same element and to period, they
must lock the element. It is not actually desirable to lock the entire to period, as this would severely
limit the number of concurrent swaps which were possible. Instead, they only need lock the teacher,
class and room in the to period. Similarly, the teacher, class and room must be locked for the
from period. These items must be locked so that no other process can effect the cost computation of
a given process. The incremental cost computation technique allows a process to calculate the
change in cost without recomputing the cost of the entire timetable. Once these items have been
locked a process can determine the change in cost independently from all other potential swaps. Ifa
process chooses an element, teacher, class or room which is already locked, then it must abandon
the choice and try another.

The maximum number of concurrent processes depends on the size of the timetable. If there are
too many processes for a given number of elements, then the number of processes abandoned
swaps will be too high. Every time a choice is abandoned the effective speedup is decreased.

The locks described above can be implemented by simple read-modify-write variables in shared
memory. A process can read a lock, and write a special marker value into the lock with an
indivisible cycle. If the process reads the special lock value then it knows that the lock is already
current and can abandon the choice. Such read-modify-write variables are not uncommon for
multiprocessor machines. True semaphores are not required because the process does not wish to
suspend when a lock is already claimed. Deadlock is not possible because a process backs-off any
transaction which it cannot complete,
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Implementing the parallel algorithm on a shared memory multiprocessor is relatively simple. The
timetable must be held in shared memory, together with the lock variables. Once the timetabie has
been initialised the master process can fork and spawn as many child processes as necessary, Each
child process permutes the timetable until the system is frozen, or the timetable has been solved.
Each process can maintain its own temperature, or access a shared temperature variable. Similarly,
each child process may share a common random number generator or maintain its own. If they use
separate random number generators then each must use a different initial seed to avoid the same
pseudo random sequences.

7.2 Complex Algorithm

The introduction of class clashes, muitiple periods, room groups and groups of requirements all
complicate the the parallel algorithm, and also decrease the amount of concurrency possible. The use
of class clashes means that the clashing elements, rooms, teachers and classes must be locked for
the from and to period as well as the element which was chosen. This is because a change to any
of these elements can effect the cost computation performed by a process.

Multiple periods mean that the requirement must be locked for the period chosen as well as
contiguous periods. This prevents a process from affecting the cost computation of another process.

Groups of requirements also demand that the original teacher/class/room combination is locked
as well as the teachers, classes and rooms of the elements which are part of the same group. This
prevents other processes from affecting the cost compuiation of the process.

The use of room groups poses the most serious problem for the parallel algorithm. In the simple
algorithm the room is locked for the from period as well as the to period. In the complex algorithm
the entire room group is locked. In a school which has a large number of rooms which are
equivalent, this may effectly lock the entire period, severely reducing the potential concurrency. The
solution to this problem involves relaxing the locking requirement when the number of free rooms is
not near zero. When the number of free rooms is high, several concurrent processes may consume
rooms and compute a cost change without affecting each other, providing they lock the room when
they actually update the count of free rooms. In this way, a process may read the room clash counter
without locking it, and then proceed to compute the potential change in cost. If the change is
accepted then the room cost must be updated correctly by locking the room for the periods
concerned. During the time that the room was not locked, the room cost could have been altered by
another process. Providing the count is < 0 then the permutation may still be accepted even though
the cost value is different.

In spite of these complications, the parallel algorithm can be extremely effective in reducing the
execution time.

8. EXPERIMENTAL RESULTS FOR PARALLEL ALGORITHM.

The parallel algorithm has been implemented on a conventional shared memory multiprocessor,
a 10 processor Encore Multi-Max. Some of the test data from Table 1 (T1-1 through T1-8), and
Table 2 (number T2-13) was presented to the parallel program, and the effective speedup was
measured. The results are shown in Table 3. The execution time is shown for the purely serial code
on the Encore, and then the parallel code using 1, 2, 4, 6 and § processors. The Peak speedup is
defined as the time for the single process run divided by the smallest multiprocess time. The peak
speedup for the small problems is low because there are not sufficient resources to keep the
processors busy. In general, the larger the problem, the greater the speedup. It can be seen from
these examples that whilst not ideal, the speedup in many cases is significant.
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Test Serial Time in Secs for Number of Processors

Dam Time 1 2 4 6 ) Speedup
Ti-1 43 41 20 16 13 13 3.2
Ti-2 79 97 52 29 27 22 4.3
T1-3 139 180 87 54 38 33 3.4
Ti-4 211 255 142 85 71 72 4.4
T1-5 390 729 409 218 157 137 53
T1-6 402 529 288 159 103 78 6.7
T1-7 807 842 528 256 165 150 5.6
T1-8 774 906 473 265 194 135 6.7
T2-13 3700 6900 3840 2100 1440 1020 6.8

Table 3 - Results of Parallel Execution

When evaluating a parallel algorithm, it is important not just to consider speedup, but also
absolute speed. The efficiency of the parailel algorithm can be expressed as the time taken to solve
the problem using the parallel code with one processor, divided by the time taken using a serial
version of the program with one processor. A number of experiments have indicated that the parallel
code varies from equal, to at worst two times slower than the serial version. Thus, in this worst
case two processors are required before the parallel code overcomes the cost of the locking and
synchronisation code. The serial time is shown in Table 3. In all of these examples the parallel
version was only slightly slower than the serial code. Large timetable data sets could easily be
expected to use up to 32 MIMD processors, providing a significant speedup. Further, it is possible
to omit much of the locking code, which would reduce the cost of the parallel solution substantially.
The times in Table 3 should not be compared to those of Table 1 because they have been produced
on different computer systems.

9. A PROTOTYPE ENVIRONMENT

This section briefly describes the way that the scheduling program can be used. It describes a
prototype tool set which has been developed.

‘Timetable specifications are entered into a text file, and are manipulated using a conventional text
editor. A compiler accepts specifications and creates a number of files, which are then used by a
scheduling program. Syntax errors, and illegal requests are reported if the specification is in error.
These must be corrected before the scheduler can be run.

The compiler translates all teacher, class, room and subject names into numeric data. A number
of translation files are also emitted so that the numeric data can be later printed in symbolic form. A
teacher, room and class usage report is also generated. This report gives the number of periods
required by each teacher, room and class.

A pretty printer program generates timetable reports for all or selected teachers, classes, rooms
and subjects. The pretty printer also performs room assignment where appropriate. The flow of
information is shown in Figure 2.

It is beyond the scope of this paper to describe the syntax of the timetable specification
language, however, it can be illustrated by the following small fragment of a University timetable
specification. Each requirement is denoted by the 'Schedule' statement, which names the class,
subject, teacher, room and a frequency. This timetable contains a number of requirements which are
locked into specific periods. A number of other requirements are specified with preferences for
certain periods. Grouped requirements are denoted by the use of the ‘together with' clause. The
welghtings are entered with the TImportance’ statements. Interested readers are referred to [13] fora
full description of the language.
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TIMETABLE DATA 9 periods per day 5 days per week
breaks after Monday 3, Tuesday 5, Wednesday 3, Thursday 3, Friday 5

(* the immovable items first *)

(* starting with maths *)

schedule yriengA taught mathsi91_04 by taa in rm1 1 times fixed Tuesday 2

scheduie yriengA taught mathsi91_04 by abd in rm1 1 times fixed Friday 2

schedule yriengB taught maths191_04 by abd in mathsroom 1 times fixed Monday 5
schedule yrlengB taught maths191_04 by daa in mathsroom 1 limes fixed Wednesday 4
schedule yriengB taught maths191_04 by gke in mathsroom 1 times fixed Friday 4
schedule yrlengA taught maths191_04 by rao in lectl 1 times fixed Monday 4

together with yrliengB taught maths191_04 by mir in nil

schedule yrlengB taught eng161_04 by daa in E1 2 times

with low preference for Monday 2 through Monday 3,
Tuesday 2 through Tuesday 5,
Wednesday 2 through Wednesday 3,
Thursday 2 through Thursday 5,
Friday 2 through Friday 5

together with yrlcscB tanght engl61_04 by nil in nil

together with yrlchmB taught engl61_04 by nil in nil

cooling rate is .9 depth is medium

Importance of Classclashes is 3
Importance of Teacherclashes is 5
Importance of Roomgclashes is 5
Importance of Blocks is 4
Importance of preference is 1
Importance of relationships is 1

END OF TIMETABLE
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Figure 2 - Timetable Computation Tool Set

10. CONCLUSION

Simulated annealing is a relatively new technique for solving optimisation problems. The
traditional solutions for the timetabling problem have either involved linear programming or
heuristic search techniques. In this paper we have examined the use of simulated annealing to solve
this problem. The results of the serial algorithm are very promising and warrant further work. It
would be possible to add cost components to include the more complex scheduling constraints that
arise in schools. The weighting of these components allows one component to be made more
important than others. '

The speed of the algorithm can be further improved by implementing a parailel program as
described. These results show good speedup until there are too many competing processors, The
problem is easily parallelised because it is possible to compute changes in cost with little interaction
with other potential changes. This property is not evident in all simulated annealing problems. The
program can be implemented on a conventional shared memory multiprocesor (MIMD). It would be
difficult to execute the program on a message passing machine because it is necessary to have fast
access to the timetable structure. At the time this paper was written, the algorithm was implemented
as a parallel program for a conventional MIMD. This program uses no more than standard System V
Unix Forks and shared memory. The parallel program can also be compiled as a serial version for a
uniprocessor, in which case the locking and unlocking code is omitted.

One outstanding problem for the parallel algorithm is how many instances of the permute code
should be run concurrently. The optimal value can only be found by increasing the number of



Solving Timetables using Simulated Annealing Pape 14

processes until the speedup starts to decrease. A more useful solution would be to have the
algorithm monitor the speedup as it executes. One possibility is to measure the amount of
congestion being caused by locked elements, teachers, rooms and classes. If the amount of
interaction rises too high then some of the processes should be shut down until the measure
decreases. However, this technique requires further investigation.

Another area which warrants further investigation is the removal of some of the synchronisation
locks from the parallel code. These locks decrease the speedup experienced over the serial code. It is
possible to omit many of the locks and allow the code to have incorrect views of the data from time
to time. It is not clear what then effect will be on the convergence of the algorithm, and further
experimental work is required.
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