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ABSTRACT:

This paper introduces a variant of a dataflow machine which is under development at
the Royal Melbourne Institute of Technology, and discusses some issues associated
with an implementation of a variant of the Id Nouveau programming language (IDA) for
this environment.
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1. INTRODUCTION

Traditionally, programming languages have been executed on sequential architectures
with a total ordering of operations specified by the programmer. In these languages,
where requirements for computational speed or other considerations dictate that
segments of a program be executed concurrently, it has been the programmer's
responsibility to specify both the task-wise partitioning of the code, and to take total
responsibility for the start-up, communication/synchronisation and close-down of these
tasks.

Under the dataflow model of computation, any operation may be performed when its
data becomes available. A pure dataflow program is a directed graph, where the nodes
represent operations, and the arcs represent values. This approach is functional and, in
common with more traditional functional programming, has the atribute that it has no
implicit temporal dependencies; outputs from operations depend only on the arriving
arguments, and not on other execution history or state-components.

This attribute is significant from two aspects, one methodological, and associated with
the subject of this paper:

(1) Providing the underlying architecture is also of a dataflow nature (ie. a
network of processors which fire when their data arrives), a massively
parallel execution environment is readily produced, and - more importantly -
this concurrency requires no commitment from the programmer.

(i) Optimisation is simplified as there is no concept of state. For example,
common sub-expression elimination is trivial as expressions, within a
certain name-space, represent identical values compared with traditional
languages where textually identical sub-expressions may depend on
variables which have changed in value. Other optimisations include loop
unraveling, code motion, code inlining and dead code elimination.

The issue is complicated (in common with other functional programming approaches),
as the underlying architecture is far from pure. This is due to a number of pragmatic
considerations needed to increase efficiency and render the pure functional form
practical.

1.1. Project

The Joint RMIT / CSIRO Parallel Systems Architecture project officially commenced in
May 1986. It is a joint collaborative project between the Royal Melbourne Institute of
Technology and the Commonwealth Scientific Industrial Research Organisation, The
purpose of the project is to investigate parallel algorithms, methodologies, languages
and architectures, Given the resources, the project has concentrated on the dataflow
model of computation [10].

1.2. Hardware

The variant of dataflow being used is based on an architecture which was first proposed
in 1976 by Egan at Manchester University, UK [7, 8] and subsequently developed at
RMIT [9]. A multiprocessor emulation facility is available for high speed interpretation
of the programs as well as a conventional discrete-event simulation of the architecture.
Work is currently progressing on the design of faster processing elements which will
provide a high speed multiprocessor computer,
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1.3. Software

Compilers for a number of languages are under development. These include IDA (a
version of the near functional language Id Nouveau {11]), GHC (Guarded Horn
Clauses, a logic programming variant with explicit parallelism and committed choice
{12]), SISAL (Streams and Iteration in a Single Assignment Language {13]) and Pascal
- a standard version exploiting the possible concurrency available in Pascal programs.
DL1 (Dataflow Language 1 [14}) was completed as a local language in the early stages
of the project.

2. DATAFLOW MODEL

A dataflow program is represented by a directed graph. The nodes represent machine
instructions and the arcs represent values in transition between instructions (See figure
1). The complexity of the instructions varies widely - from a simple addition to the
extraction of a sub-vector from an array. Values (tokens) are placed on and removed
from arcs according to firing rules.

The underlying machine consists of a set of processors, each of which may support one
or more nodes in the graph, and a communications network.

The primary aim of a parailel computer is the achievement of increased processing
speed, and subsequently, reduced execution times. The maximum degree of
concurrency is equivalent to the breadth of the unraveled dataflow graph. Theoretically,
this means that the total time for the program to execute is only as long as the time for
the critical path of the program to be computed.

B 2 C 1.5

YA

Z = A + (B*Z - C*1.5) = (D - 2*E)
Figure 1. - Example Dataflow Graph
3. THE LANGUAGES

A number of choices need to be made in the implementation of any dataflow language.
The first of these is the choice between demand-driven and data-driven execution. The
demand-driven model operates on the requirement of a node for its data. This is
achieved by a node sending a trigger signal back to each preceding node which directly
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produces its arguments. These signals propagate back until arguments are either literal
or are input data, and the forward execution sequence begins. While this lazy evaluation
model prevents unwanted results from being computed (for example the unused arm of
a conditional expression), it serialises the computation, and places extra demand on the
communication channel because of the back-triggers.

The alternative to demand-driven execution is data-driven. In this approach, nodes
execute when the data arrives. When all the arguments to a node are available, it can
fire. Firing consumes the arguments, performs the specified operation, and places the
result on its output. This eager-evaluation approach maximises parailelism, and places
no extra demand on the communication network since the trigger is the arrival of the
data itself. Eager evaluation can however lead to an infinite chain of execution, for
example, the partial generation of sub-expressions in a recursive function.

There is another implementation issue. How are the nodes on the graph distributed
across physical processors? Attempting to clump nodes together in the one processor
based on their locality in the graph aims to minimise communication cost.
Unfortunately, evidence so far suggests that this scheme creates execution hort spots,
and a random static allocation scheme combined with random dynamic allocation for re-
entrant or recursive calls, is currently being used at RMIT. This allocation scheme has
been found to perform well for programs of non-trivial size.

3.1. Introduction

There are two parallel functional languages that were considered for implementation,
SISAL (Streams and Iteration in a Single Assignment Language) and Id Nouveau.
SISAL was developed as a cooperative effort between Colorado State University,
Digital Equipment Corporation (DEC), Lawrence Livermore National Laboratory and

“the University of Manchester, and is part of an international effort to evaluate different
architectures for future parallel machines. Id Nouveau was developed at Massachusetts
Institute of Technology and is used on their tagged-token dataflow architecture
(TTDA)[20].

After evaluation, it was decided to implement both languages. The implementation of Id
Nouveau (IDA) provides the ability to compare MIT's TTDA and Manchester's
dataflow architecture with RMIT's hybrid dataflow machine, Implementing SISAL
allows comparisons between other SISAL compilers for a host of computer
architectures ranging from Crays, WARPs and Transputers to Sequents, Encores, Suns
and Vaxen. This then provides a direct link, with identical source code, for
benchmarking against the other architectures and the RMIT dataflow machine.

3.2. IDA

i1d Nouveau is MIT's experimental dataflow language. It is a functional language with
powerful constructs designed to attain optimal concurrency from existing and novel
algorithms.

3.2.1. Language Description

IDA is a collection of named, value returning functions. Each function may contain a
series of bindings to local variables, and these execute in parallel as the values of their
generating expressions become available. To preserve the functionality of the langnage,
each variable may be bound only once. In the following example (figure 2), the three
assignment statements are constrained by data dependencies so that the second
statement must execute last; the other two may execute immediately. The language has
no method of sequential execution of statements determined by statement ordering.
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def abc x:integer y:integer returns

integer =
let
var a, b, c: integer;
assigns
a=x + 1;
h=a * ¢;
c =1y / 11
in
b - 2;

Figure 2. Example of statement dependencies.
3.2,1.1. Iteration and Recursion

There are a number of issues associated with loops. In a very simple loop - for example
initialisation of all components of an array to some constant value (figure 3) - each
iteration of the loop is completely independent, and all iterations can be accomplished in
parallel.

for a from 1 to 1060 do
arraylal = 3.141z2
returns
array;

Figure 3. - Paralle] array assignment

There are a few alternatives when generating code for a parallel loop. A large number of

nodes can be executed in parallel to accomplish the initialisation, or the initialisation can

be assigned to a single node, to avoid saturating the processors, and performed serially.

It is likely that parallel loops will be unrolled and executed in clumps. These clumps

will reduce the potential concurrency, but will improve performance by not generating

excessive concurrency. The presence of excessive concurrency may increase the
computation time by needlessly consuming processing elements and network

bandwidth, and is therefore a waste of resources The clumping method will still provide

significant concurrency but at a reduced cost.

For more complex loops, each loop iteration may have a data dependency from the
previous iteration (figure 4). This is handled by the IDA next construct:

while v < .. do

;extx:x + E(y);

returns

Figure 4. - Successive iteration dependencies

In this example, the variable called x refers to the current loop iteration, unless it
is an assignment of the form next x =, which refers to the (distinct) variable % in
the successive iteration, In this way, data dependencies between successive iterations
can occur without breaking the single-assignment rule. In this type of loop, the
next x = becomes 4 serializing point: references to x in the successive iteration
cannot continue until the next .. has been executed. However, this form of code
construct is often optimised to permit independant executions of the called function to
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execute simultaneously, with a tree of addition operations calculating the result of the
next x = expression.

3.2.1.2. I-Structures

Id Nouveau is basically a functional language with some additional structures, called I-
Structures {17], which are non-functional but still deterministic. The functional part of
Id Nouveau consists of a number of definitions and expressions. Definitions bind
names to values. Expressions may be arbitrarily complex, and may contain (among
other things) function applications, conditionals and loops. I-Structures are provided in
an attempt to remove much of the copying which occurs in functional languages,
without destroying the determinacy of functional programs. I-Structures allow complex
data structures to be created. If an element is accessed before it is defined then the read
is deferred until the write has completed. Each element of the structure may be read
many times, but may only be written once. Thus I-Structures preserve the dataflow
semantics which apply to simple variables in the functional part of Id Nouveau.

3.2.2. Language Extensions
3.2.2.1. Input / Qutput

Input and output are essential properties of all conventional and commonplace
programming languages. This is usually not true for dataflow languages. Originally
dataflow languages did not permit any form of input/output. More recent languages,
such as SISAL, have allowed the result to be returned to the standard output when the
program has completed. Id Nouvean does not provide the ability to read data
dynamically. This cannot be considered satisfactory for a usable language. The
extension o Id Nouveau provides a set of system routines that allows the programmer
to access both the terminal and files. Standard operations include open, close, read,
write, etc that are available in common high-level programming languages. These
routines are not enough to successfully manipulate input/output however. An additional
language construct is required - sequential execution. Note that these operations are
neither functional nor deterministic.

3.2.2.2. Sequential Execution

Sequential execution allows the programmer to implicitly instruct the compiler to
produce code that will be executed serially. Neither Id Nouveau nor SISAL permit this.
Both these languages insist that the order of the source lines does not indicate the order
of execution. To provide sequential ordering of instructions in either language requires
the programmer to explicitly specify dummy dependencies between the operations that
they wish to be executed in order. This means that the body of all function invocations
are executed in parallel but each function call is guaranteed to wait till the previous (in
source line order) has finished before beginning execution. This sequential operation
only applies to a single lexical level so that as much concurrency as possible can be
attained.

The sequence construct permits input/output to behave as the programmer might
expect on a sequential architecture (with inherently sequential device hardware). A
simple code segment is shown below. However, it is believed that the programmer
should restrict the usage of file I/O to the initiation and termination of their programs.
This reduces the loss of concurrency. Terminal 1/O is less likely to be restricted due to
its interactive nature.
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def writeout = segquence

open outfile "{filename";

writeln outfile a+b "hello world!i®;
close outfile;

open infile "filename";

readln infile <}

writeln stdout "¢ = " ¢;

close infile

i

i

it

i

in
{):

Figure 5 - IDA sequential code sample
3.2.2.3. Streams

A powerful feature of SISAL is the data type stream [18]. A stream is theoretically an
infinite list of heterogeneous data items. SISAL, however, restricts this definition to
provide only homogeneous data types for its elements. Streams are not available in Id
Nouveau. The programming usage of streams for producer/consumer constructs and
file input/output makes this data type (and its associated operators) desirable, so they
are included in IDA.

3.2.2.4. Declarations

Id Nouveau originally did not contain strict data declarations, but instead relied on
programmer intuition to ensure that type conflicts did not occur. The RMIT version
uses a Pascal-like format for declaring types and variables. There were two main
reasons for adding fully declared types and variables to Id Nouveau. Most important
was the desire of efficient compiled code, and declared variables and types held better
prospects for more accurate and simpler code optimisations. Secondly, the usage of
variables in a declarative manner was thought to promote faster application development
and less debugging due to type conflicts that a typed compiler easily reports, This
problem is exacerbated by the lack of adequate debugging environments.

3.2.2.5. The IDA Compiler

The IDA compiler consists of two stages. The first stage compiles IDA source into the
intermediate form IF1 (see section 3.3). The second, translates IF1 into the dataflow
assembler. By compiling to IF1, IDA is portable, as it can be executed on any of the
architectures that have an IF1 translator.

The compilation from IDA to IF1 employs a simple one-pass recursive descent [19]
methodology. During this stage, a source level representation of the program, called a
program graph, is created. Once the parsing has completed successfully, the program
graph contains an accurate and complete representation of the source. Code
optimisations such as constant folding, sub-expression elimination and code
propagation can now be performed on the program graph. Code generation proceeds
after all optimisations have been completed.

The compilation process transforms the program graph into IF1 types, function
definitions and object code. The advantage of using IF1 has been mentioned earlier. It
lies in the ability for several different languages to compile to the same standard form.
Such a system permits an computer architect to merely implement an IF1 translator and
have software available for immediate use from both the SISAL and (now the) Id
Nouveau/IDA parallel community. The disadvantage of compiling to IF1 is conforming
to the node boundaries defined by IF1. These are restrictive as the RMIT architecture
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supports several of these operations directly, but IF1 forces additional constructs to be
planted by the compiler to perform the same function? .

3.3. 1IF1

IF1 [15] is an intermediate graph form developed at Lawrence Livermore National
Laboratories. Data in this form is usually the result of a sisal compilation before it is
translated into assembly language or binary. The translation from IF1 to the RMIT
dataflow assembler is often a 1:1 mapping. IF1 compound nodes and stream operators
are more complex. The difficulties with stream operation nodes are caused by the
different semantics of 1F1's streams and the RMIT architecture's. The RMIT
architecture permits heterogeneous stream elements to be accessed in a sequential
manner, via head, tail, cons, etc nodes. However, IF1 assumes that streams are
homogeneous random access data structures. This language feature requires the
translator to generate code that traverses the stream to the required element and then
performs the necessary operation. Such a procedure is unlikely to be efficient due to the
amount of token copying involved in head/tail operations with the result that streams
would be operated on by reference as stored objects, for which random access is
supported.

The IF1 translator builds a complete internally representation of the program in daraflow
graph form, Optimisations that are hardware dependent can then be carried out if
necessary. This representation is traversed and the assembly code is produced. Code is
only produced for accessed routines providing automatic dead code elimination. The
more sophisticated IF1 nodes require a different approach. When a compound IF1 node
is being generated, the translator must resolve complex implicit dependencies between
sub-graphs of each compound node. The more complicated atomic nodes may require
an inline to be planted, which is supported by the macro assemnbler

3.3.1. Predefined System Nodes

The RMIT architecture instruction set includes several complex nodes that are not
expressible in IF1. For example, the trigonometric functions are directly supported by
the hardware. Achieving access to these hardware instructions directly is a problem that
has several possible solutions. These inciude augmenting IF1 to support a new node for
each instruction; having the IF1 translator detect the names of these special nodes as
functions when called and substitute the architecture's instruction; or completely ignore
the existence of the hardware instructions and require the compilers to plant discrete
code to perform existing operations.

The later of these possibilities is clearly unsatisfactory. The first solution is the ledst
portable, but requires modification to a standardised language. The second solution is
the most portable, but may cause name resolution difficulties. This solution was
selected due to its portability. The name conflict can be resolved by ensuring the user
does not declare a function of the same name. If this is done, then the user declared
function must be planted.

3.3.2. Stored vs Transmitted Structures

A difficulty with purely functional languages is achieving efficiency. To illustrate this
(see figure 6), in the data flow environment, to average the first and last values of an
array, the array must be generated in total, and transmitted over the communication
network to a node which duplicates the array, sending one copy to a node which

LAn optimising IF1 transtator should correct this probiem.



Implementing a Functional Langsage on the RMIT Dataflow Architecture Page 9

extracts the first element, and another copy to a node which extracts the last. The output
from these two nodes then go to an adder node, and then a division node, where the
sum is divided by the literal 2

array

first element inde last element index

average

Figure 6. - Average of the first and last elements of an array

This is inefficienct because an excessive degree of data copying is incurred when
providing the entire array to both of the array read nodes. With large arrays, this
copying is a significant overhead. The advantages of functionality are the lack of state.
Maintaining state is a area of concern due to the concentration of operations in a small
area. Such concentrations of effort result in considerable restrictions on the amount of
concurrency exploitable from the code segment.

In dataflow, the solution to this inefficiency is to create a structure store. This is a
mermory moduie that can be accessed by special load and store nodes in the dataflow
graph. This improves efficiency (as in the above example), but it also introduces
problem. The introduction of a structure store, although distributed across the
processors, creates potential bottle-necks on frequently referenced data.

As updating, for example, of array components may occur at indeterminate times, the
results of execution may themselves be indeterminate due to possible multiple
assignment. To prevent this, the structure store can be operated in two modes:

(1) Classical mode, where each memory cell may be read and written multiply,
and

(2) Single assignment mode, where each cell is either undefined or has been
assigned exactly once, Should a cell be undefined upon an attempted read,
the read is suspended until that specific cell has been written, at which time
all suspended reads are honoured.

In the IDA language implementation, the first mode is used only by the system, de-
buggers etc {for example as execution counts in profiling). All user-controiled data is
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mapped onto single-assignment celis. Thus, an expression which references an array
component value which is undefined will suspend until that component becomes
defined. In single-assignment mode, any attempt to assign to an already assigned cell
generates a run-time error.

This single assignment property preserves certain aspects of dataflow programs which
are desirable. In particular, the results of computation will be dererminare (that is,
repeated execution on a valid environment with matching data will lead to matching
results). This approach is not strictly functional - operators in an expression cannot be
textually substituted by their results at any time, as their arguments may not be defined.
However, it is functional given that the computation terminates. This property
guarantees a clean programming methodology.

IF1 data structures are likely to use the first mode of the structure store. This is because
IF1 is a functional language, and does not attempt to write to a data location multiple
times. However, an optimisation is available that uses multiple writes as a means of
reducing the amount of structure copying inherent in IF1.

3.3.3. Error Handling and Debugging

Error handling is non-trivial due to eager evaluation. For instance, when evaluating
both branches of an if expression, one branch may generate an error (divide by zero 7).
At this point it is unknown which branch is legal. Interrupt driven error handling would
be inappropriate here as the interrupt may not be required (should the alternate branch
be the legal selection). Alternatively, using inline error trapping routines is inefficient.
Other schemes, such as error propagation also have difficulties in a functional
environment. At this stage, error trapping is favoured as the additional inefficiencies
execute in parallel, and should note significantly effect the critical path.

The are also many issues involved with debugging a dataflow graph. Of major
significance is the lack of any state information. This arises from the asynchronous
nature of the processing elements. To stop all of the processors and examine the state of
execution is deemed difficult and worse, potentially indeterminant. Another possibility
is the planting of inline debugging code in the dataflow graph. As with error handling,
this inefficiency can be executed in parallel and not imped the execution time
significantly!.

3.3.4. In-Situ Updating

The in-situ updates techniques required by the IDA language are not supported by IF1.
This is due to IF1's strict data structures (the structure is not available until all
component fields are defined). IF2, a superset to IF1 that includes explicit memory
management [16], overcomes this difficulty however. At this time, an implementation
of IF2 is deemed unwarranted until more resources become available.

Therefore, a new IF1 node is proposed. This node permits non-strict data structures in
a manner similar to IF2 by using the RMIT architecture's structure store to contain the
data. An implementation of IF2 would be the ideal solution however.

4. CONCLUSION

This paper has discussed issues in the design and implementation of a variant to MIT's
Id Nouveau language, IDA, that has been developed at RMIT. Several issues related to

1assuming that there are sufficient system resources.
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this design are significant. Of particular importance is the ability to perform dynamic file
operations whilst still maintaining a reasonable degree of concurrency during program
execution. Another achievement is the portability of the new language by using a
standard intermediate form that is capable of executing on a range of diverse hardwares.
The language permits source level comparisons of both the architectures themselves
(particularly important for the dataflow machines) and of the compilers and the
efficiency of their code generation, for all the architectures.
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