JOINT ROYAL MELBOURNE INSTITUTE OF TECHNOLOGY AND .
COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
PARALLEL SYSTEMS ARCHITECTURE PROJECT

IDA
A Dataflow Programming Language

TR 112 075R

P. G. Whiting

Division of Information Technology
CSIR.0O.
¢/o Departinent of Communication and Electronic Engineering
Royal Melbourne Institute of Technology
124 Latrobe St
Melbourne 3000
Australia

Version 1.0 October 1988 .

Abstract

This paper describes the IDA programming language - a language designed to
make efficient use of the RMIT/CSIRO dataflow computer. It is a functional
language, based upon M.LT's Id Nouveau which makes use of parallel architectures
implicitly - i.e., the programmer does not have to use special constructs when coding
algorithms. The compiler determines which parts can be executed concurrently and
generates machine code to take full advantage of the underlying architecture.

IDA : A Dataflow Programming Language. I

Table of Contents

ADSITACT oottt ettt ettt er et s et ettt ettt atcteaee st enten s et eeerene e eeeraserans I
TaDle OF COMIBNIS .iuiiiiitit ittt et ettt ee e st eeeae e e s e e s eeesse e I
List of Examples....coconnn..., e et b4 e ee n et aate b e2aass e eaee e tnet onre e anes snnsreneoe v
LiAST OF TADLES. ...ttt e et et n e s e s e een e e ene e Vv
INErOQUCHON ..ottt ettt ettt et se oot e s e ses s ee s et en e seer e 1
1.1 Differences between IDA and Id NOUVEEU ...c.ccevveeeeeveeeeeeeerereeveererseene . 2

1.2 The IDA programming language OVEIVIEW oo eieeeeeeeeeeeereeseeeseeeann 3
TOKENS BNA CONSIANIS ettt irniietetetscoete st eeseesee s e eseeeeseseenesreseseseseesmes e renes 4
2.1 Character Set and Special SYMDOLS.vuiuureeieeeeeererseenereeeseeeesressersenso, 4

2.2 TACTITIETS L.ttt eatii s es et e et s eetee e e e ea e et ea s eas eeess e en e 5

2.3 NUmbers. oo et re e e e ea et e et e e rrerrae et arans 5

2.4 ChAraCteT SITIIIES . c.v e coceirrreererereensceeses s sassesec e eaesasesesesseseseseseearenens 6

2.5 COMMIIBNS. ..t eveccreerraaenete s saeras s teer s eesess st se et eensseseeneseseeeneereseasesseneneens 6

2.0 Compiler FIlS....c.oiiiiiiirinie s et e eeen ettt er et eseseseneeenns 6
Blocks, SCope and ACHVAHONS cccuiiriiteiiiets it erer oo reeeeeeesses e seseessres s esrensenns 7
3.1 DEFINITION OF A BLOCK ..ttt eeeees e 7

3.2 RULES OF SCOPE. ittt ettt ces e e en s seases e 9

3.2,1 Scope of @ DeClarationuucocororoe oo eer e, 9

3.2.2 Redeclaration in an Enclosed BIocK.......ocooivvvevcreovreecenenns 10

3.2.3 Position of Declaration within its BIOCK.....oveeeereveereeeernenn. 10

3.2.4 Identifiers of Standard OBJeCtS. . .ovuiirueeeririieeeeereersreeeeesenens 10

33 ACTIVATIONS ettt e et secase et see s e e eeeeesererane i1
S ettt et et ettt sttt ee et e 12
A1 BASIC TYPES .o et ee et e aeeaee e 13

4.1.1 Numbers, Strings, Booleans and Mile..e..veerveeeeeoeeoeeooronn 13

4.2 SUBRANGE TYPES ...ttt ceeteees oo ens e 13

4.3 STRUCTURED TYPES oot s, 14

43,1 TUPIE TYPES..iccetriieiiiirer e et et e e e 14

4.3.2 UnI0N TYDES .oiirevieriitreneeieeiniss i ettt ee et nssene e resns 14

4.3.3 ATTAY TYDOS cvettreneeieeritee ettt eeee e s seesse et s en s eres s s e 14

4.3.4 SITBAM LYPES et ternirrirereeerieereeteesinereesees et eeessesesesessee st sereneae e i5

4.4 PROCEDURE TYPES....cccooeo.. et eh et et et e rsaent e e b et sans s teas 15

4.5 IDENTICAL AND COMPATIBLE TYPES oo, 16

4.5.1 Type TABNTLY coouieieiie ettt et eeee e 16

4.5.2 Type Compatibility . ..oereviveeeeeiieeeecee e eeeees oo e 17
4.5.3 Assignment Compatibility.........c.ooioeeeieeeeeeeesesnensessean, i7.
Variables.....coovvivvveninen. e h et L A ettt b s et e oA e oA s s b s e e e s saet s eaee e neeeentens 18
5.1 Variable DeClarations.. ..o oo 18

5.2 Variable REFEIENCES oot oeee e 18

5.3 QUATFIETS ..ottt e ettt et ee e e 19

5.4 Accessing components of Tuples and Unions.....o..ocoooooooroosove, 9

B R PTESSIOTS .1ttt ettt ettt ettt ee oo, 21
6.1 OPERATORS. ..ottt et 26

6.1.1 Arithmetic OPETAIOTS.vvveievs e e 26

6.1.2 BOOIEAR OPEIAIOTS. . ereueeeirrr et stseeeseeeeest e se e eese e s, 26

6.1.3 Relational OPerators.. .o et 27

6.2 PROCEDURE CALLS ...oooovots oo 27
Functions............... e e e b e e e e s 2e e ebat bt et s aretntaeaeenennnneneen 29
7.1 The IF fUnCHOM e e e teeetae e 29

7.2 LOOPING FUNCTIONS ..ottt e 3G

7.2.1 The FOR fUnCUOM. covoviiii et 30

7.2.2 The WHILE fUnction ..o.ooveeivecoiiiieee oo 31

7.3 The LET fURCHON oottt 32

7.4 The SEQUENCE FUNCHON w..ttoiitee et 33

7.5 COMMANGS. ..ttt ettt 34

IDA ¢ A Dataflow Programming Language. I

PLOCEAUTES ..ottt trestcr e e e te e eeer e et ets s e sseb s e e es st st bt s e et st enbenernenteneaens 35

8.1 Procedure Declarations .o ioiiaeciiee e e e et sae e sesean e 35

8.2 PATAIMELIETS ... vttt creu e eentireecrees e es st asae s se st s tens e st et essensessesbasstet oo 36

8.3 Parameter List Compatibility «ccccoinioiici i s ses e 36

INPUE S QUIPUL vttt ettt s er s et eres e serenese e e e enesenene 37

9.1 SEQUENTIAL EXECUTIONoiiiiieriicieetetes et e enesane s eneans 37

9.2 STANDARD I/O PROCEDURESooii et seee s eereeans 38

9.2.1 The OPEN Proceure.o ereeceieesae s esesesessnes 38

9.2.2 The CREATE Proceditre.. .o ceceseee e 38

9.2.3 The CLOSE ProCedurt.. . riiiiiceirinier e oo oeeeeseeens 38

9.2.4 The EXTISTS Proceure... oo iieeeeeeeieeseoesoereceesaerosenens 39

9.2.5 The READ ProCeture.....oovaucnricciicicrieiinieiiiress s eeeeneseeneenene 39

9.2.6 The READLN ProcedUrt oo st 39

9.2.,7 The WRITE Procedure........ccovimeiiieriiceeirisie oo, 39

9.2.8 The WRITELN Procedire . oouo i eeereeeeee e e e see e eeenennens 39

S1ANAATT PTOCEAUIES. .. ot iv et cvivirtree sttt stnen e se st s e et ee e eee et eemeesreaseeesone 4]
16.1 ARITHMETIC PROCEDURES ...c.coiiiiiiiiicitieee e e 41

10.1.1 The INR OPEIALOT «...cocvierirrirrinrerrensesseseseesesetesscesess e 41

10.1.2 The EXP OpPETator. .. iiceiceieie oo ceeesenereenas et 41

10.1.3.The PWR ODEIALOT. c..cuicrrrirrnnnrerieesessnseieteseie e ee s oo eaensens 41

10.1.4 The ABS OPETAIO . c1evevieieceee ettt et e e e 41

10.1.5 The LNE ODETAIOL c.c.ciereiaeerieissereriee e seseceeses e s esseasseesesnaes 42

10.1.6 The LNZ OPEIAtOr. ...civiiieeeirerrrenareasistnsasssseeesesaeeeensemsneaenns 42

10.1.7 The LOG OPETatOT . evivieerieieeiceiccieisic st eesseeeseneeneeaeesaesnens 42

10.1.8 The SQT OPEIALOL..ccv ieieioierrereree e seeeeseecrcsessereaseeesesennenec 42
10.1.9 The SQR OPETAIOT. ..ot vvvieeerieeieeserieievesteteess et esessseessenane 42

10.1.10 The SIIN ODEIAIOT. .ottt seee e sere s e e seeee .43

10.1.11 The COS OPEIatOT . itirii it eaeeseseereerevane 43

10.1.12 The TAN OPEIAlOT .cuovieieeieirsceeiesee s eee s e ee et seeseseeeeenes 43

10.1.13 The ATN OPEIAIOT . evevieeieeeeiee et e seer e ee e s eaeneereeeeeeeeens 43

10.1.14 The ASN ODEFALOT .. .ovvvveee ettt eeeoeeee s eeenenes 43

10.1.15 The ACS ODEIAION. . cvtieireeeieietereeieseseese s s eessssessenesenesseen 44

10.1.16 The RIND OPEIRLOT ..ot vvevereeemsreeereeseeeseessesscoriencemoneaenseeesene 44

10.1.17 The TRC OPETALOT. cocveviveieeeie et eteseeeeen e eeeeeeens 44

10.1.18 The FLT OPEIator ccoeivoeieiie ittt e eseeneneens 44

10.1.19 The SUCC OPETALOT......vvirierierrrrrirereeeiesesseeetee o ssseveeeenessene 44

10.1.20 The PRED OPEIALOr ..cvemmirrinieeiteece sttt vevereeeseeene. 45

10.2 SORTING OPERATORS ..o ceeeiieree e st ceeneeeeesse e eaeens e ereseninns 45

10.2.1 The GTS OPETAIO . cicrrriiiieeeieeceeeeseercseeeteeeceesee e sinsseresseenane 45

10.2.2 The LTS OPOIaLOT ..o cvieieeer ettt 45

10.2.3 The MAX ODEIAIOT ctivirivieiteceeie st e et eneeeeeeenesens e 45

10.2.4 The MIN OPEIALOT. ..oeovovvviiieiieeiereeeret e eeeseees e e meneeeeesaeereas 45

10.3 GENERAL PROCEDUREScoitiie i e e 46

10.3.1 The RNG operator........ e et ee et et e an e e n b raassnaeerans 46

10.3.2 The WDW ODETALOL........eeoeeeerer e eeeessceseressessseenees e eee e 46

10.3.3 The ORD OPEIAIOT. . .cvererieereersteeesiseeveeeaeee e et e eem s esenen 46

10.3.4 The CHR ODEIatOT . ooovvir e [T OPR ORI 46

ACKNOWLEDGEMENTS ...ttt ee ettt et es e eeeeeseseeaeessestasanans 47

REFERENCES ... oottt ee et ssa et eeeees et et eneeeeseeensesesssseenan 47

APDENdix A - TDA SYNUX.viiieiriririensitieeeeeis oo eeeee e eneeenenss e 49

Appendix B « IDA EBNF......cccciimimiiiiniiies oo eseoesees oot eessemeseeeeesons 60

Appendix C - IDA Example PTOZIRINS ittt s 62

Appendix D - TDA "Man’ DAZC. .c.ovirrrrerireisitnreeeeeieeis s e e eeeeeeaee s et ereeeses oo eeere oo 64

IDA : A Dataflow Programming Language. v

List of Examples

1.1 - SPhere VOIUIMIE. ...oco i iiinieeii ettt sn e s e s e n e se e et eeee e se e e neenans 3
3.1 - PTOCEAUTE POWET . ..euiiieiiiiieeisiescnsmasa s se ettt cs s et enseneees et essese s senns 11
3.2 - Activations Of POWET 4 4. .. ooiiieiieeeeeeeeeeraseoree e veeaneaas eereeee et aanes 11
4.1 - ATTAY EXAITIPIE otovititcetcee ettt st scnsee st stees et ens s soe st et er e eene s seeeeeaeeeanaenns i5
4.2 - Type Identity EXAIPIe.. oottt ne e s e sesee e esees 16
5.1 - UDION ACCESS vt estetcieie s sss s et ess e et ss et et etaeneeeeserensemeseeenas 19
7.1 - Command EXAmMPIe.....iiiiiiieiae e ermriisieie e ettt e e etee et eeseneeereeenees 34
9.1 - Input/Output EXAIMPIE.. . ccrueeierrieaiseteseiiass ettt et s e e eraeeass s sennens 40
D1 - Matmix MUDIY. oottt ot emeeeen e esen e ees e eeeseneeenns 62
D.2 - wavefrontida et ettt e e e e tete s e an b e snseannesras 63
List of Tables
6.1 - OPETaAtOT PIECEUBNCE .. iv ettt ittt et ee et e aeee e es e s eneene. 21
6.2 - Binary Arithmetic OpPerRIOTS. . i receeeeeeereeeaeeeseseres s s st esesesens 26
6.3 - Unary Arithmetic OPETAIOIS ...iiiee i erieeeeeereoreeeeeeeeeereeses et eeseseseessseresesessseons 26
6.4 - BOOIEAN OPCTALOTS 1vevariavteieeieee et eeeseveeeseesee e eeeeee e e eeessessaseeseeeeseseses e se s 27

6.5 - Relational OPEIALOTS . o.ociiiereeieeeiiaseeeies oo eees e e s eeeeee e e seseses e eee e 27

IDA : a dataflow programming language. 1

Chapter 1
Introduction

This report describes the IDA programming language, designed primarily for use
on the RMIT/CSIRO Dataflow Machine [1, 2]. This language is finctional since all
expressions in a program return a value and are free of side-effects!, which are the
inadvertent or intentional changing of the global environment through the execution of
a expression statement. These properties allow DA to make use of the unique
environment offered by a dataflow computer which provides fine-grained parallelism.

The Joint RMIT / CSIRO Parallel Systems Architecture project officially
commenced in May 1986 as a collaborative project between the Royal Melbourne
Institute of Technology and the Commonwealth Scientific Industrial Research
Organisation. The purpose of the project is to investigate parailel algorithms,
methodologies, languages and machine architectures. Given the resources, the project
has concentrated on the dataflow model of computation [2].

The variant of dataflow being used is based on an architecture designed in 1976
by Egan at Manchester University, UK [3]. A multiprocessor emulation facility is
available for high speed emulation of dataflow programs as well as a conventional
discrete event simulation of the architecture. As well as IDA (a version of Id Nouveau
[4]), compilers are under development for GHC (Guarded Horn Clauses, 2 logic
programming variant providing parallelism & committed choice non-determinism|{5)),
and SISAL (Streams and lteration in a Single Assignment Language [6]), an
applicative language for exploiting parallelism In addition, DL! (Dataflow Lan guage
1) [7] was completed in the early stages of the project. Work is currently progressing
on the design of high speed processing elements which for use in a high speed
multiprocessor computer. :

IDA (Id Nouveau Australia) is a subset of MIT's Id Nouveau [4] which was
designed for their Tagged-Token Dataflow Architecture {8]. Id Nouveau removes
from the programmer the burden of specifying which parts of the source code are to
be executed in parallel by using information implicit in the data dependencies in the
program. This also means that the programmer does not need to change his code if the
configuration of the target computer is altered.

To take advantage of some of the unique features of the RMIT/CSIRO Dataflow
Machine, it was decided to produce a compiler for Id Nouveau, and this would allow
the designers of the compiler to include some of their own ideas for improving a
dataflow language. Therefore, a subset of Id Nouveau was designed as this provided
source code compatibility and yet still allowed us the freedom to include our own
design choices.

When the writing of the IDA compiler began, Id Nouveau did not have any form
of data-structure typing?, however it was felt necessary to include a typing scheme as
this allows better code for the underlying architecture to be produced and agsists with
the coding or debugging of IDA programs. The typing scheme used is based on
Pascal's and allows user-defined types.

Besides the type-checking we have also introduced a new function into the Id
Nouveau syntax - sequence. This function allows us to provide Input / output routines

'Later it will be shown that this is not entirely true.
2Type checking is now included in the subsequent releases of Id Nouveau.

IDA : a dataflow programming language. .2

which the original Id Nouveau and most other dataflow and.functional languages
omit.

Finally, one of the features of the underlying architecture is that it has instructions
to work with the stream data structure {9]. The IDA compiler includes streamns as a
pre-defined type along with high level operators for manipulation.

1.1 Differences between IDA and Id Nouveaun

Beside the differences aiready mentioned: the data-typing scheme, streams, the
sequence function and input/output, there are a number of differences between the two
languages. As this is the first release of the IDA compiler, there are some features
which have not been included in this release. Here is a list of these differences and
ormissions:

« Prefix operators.

« Curried functions
L this release of the compiler curried functions have not been implemented,
but the type-checking has been coded to generate an error only when too many
arguments have been supplied to a function.

+ Implicit and Polymorphic typing -
A subsequent release of MIT's Id Nouveau development system Id World, has
described their typing scheme based on these two methods. Therefore to
maintain source-code compatibility with Id Nouveau, later releases of the IDA
compiler will also include these typing schemes, which will be user selectable.

» Stream and Union data types and operators -
not implemented in this release,

+ Sequence function and Input/Output -
not implemented in this release, and

« Standard procedures { chapter 10) -
not implemented in this release.

IDA : a dataflow programming language., 3

1.2 The IDA programming language overview

As with an Id Nouvean program, an IDA program is made up of

a) a collection of definitions (or declarations), and

b) an expression (also called the "query"). ,
A definition is the mechanism whereby an expression or value is named. If a
definition includes parameters then it signifies a procedure definition!. The query
initialises program execution and produces the final result. The general structure of an
IDA program is illustrated in the following example :-

program to calculate the volume of a sphere
definitions

o e

def pi = 3.,142;

def power b:number e:number returns number =
if (e = 0) then

1
alse

b * (power b (e - 1));

def spherevol rinumber returns number =
4/3 * pl * (power r 3);

[+]

% program body and query

let
var radius : number;{ declaration }
assign
radius = 10

in

spherevol radius;
Exampie 1.1 - Sphere Volume

In this example it can be seen that the definitions occur outside the query Ler-Block
and include both the binding of a value to a name as well as function definitions
(power and spheravol). A Let-Block consists of two parts - the Let-Assignments
aML&RawnmwmmTMﬁmmmmnSm@ﬂrmmmgmm%memm%mmm
values used either in subsequent statements within the Let-Assignments section or in
the Let-Return section. The second section is an expression which defines the value
returned by the Let-Block. In this case, we see the declaration of the identifier
radius and its binding to the value 10 within the Let-Assignments section and the
return expression spherevol radius in the Let-Return section. It is permissible
for type declarations to occur outside the Let-Block, and for nested definitions to
appear within the Let- Assignments section of the Let-Block.

It is possible to define a procedure without parameters.

IDA : A Dataflow Programming Language. , 4

Chapter 2
Tokens and Constants

Tokens are the smallest meaningful units in a IDA program and structurally correspond to the
‘words and punctuation of an English sentence. The tokens of IDA are classified into special
symbols, identifiers, numbers, and character strings.

The text of an IDA program consists of tokens and separators, where a separator is either a
blank or a comment. Two adjacent tokens must be separated by one or more separators if each
token is an identifier, number or word symbol (keyword or reserved word).

No separators can be embedded within tokens, except in character-strings.

2.1 Character Set and Special Symbols

The IDA programming language uses the ASCII character set, with letters, digits and blanks
being subsets of this character set:

+ lernters are those in the English alphabet [A .. Zanda .. z],

* digits are based on Arabic numerals [0.. 91, and

* blanks consist of the space, tab and end-of-line (CR) characters.

Special symbols and word symbols are tokens having one or more fixed meanings. The
following characters and character pairs are special symbols :-

+ - / * A arithmetic operators

= assignment and equality operator
< > comparison operators

1 _ - array selection

; tuple and parameter separator

C) parameter closure

type allocator
; Staternent separator

<> not equal
= less than or equal operator
>= greater than or equal operator
" subrange symbol
% original comment (Id Nouveau)
(* *) block comment (IDA)

The following are the reserved words :-

and rray boolean by char
const def do downto else
for from if in let
new/next nil not number or
returns string then to tuple
type union Var while

The case of the letters in word symbels is ignored.

IDA : A Dataflow Programming Language.

2.2 Identifiers
Iddentifier

-—@

(D

2.3 Numbers
Unsigned Integer

(digit

Unsigned Number

unsigned
‘ integer

unsigned

intager

e unsigned
L -~ integer

IDA : A Dataflow Programming Language. 6

2.4 Character Strings

| character

String

2.5 Comments

When programming, it can be useful to place notes explaining your code by using comments.
Such comments are ignored by the compiler and treated as blanks and therefore do not effect your
program in any way.

Traditionally, Id Nouveau signifies a comment by using '%’ at the start of the line, and all text
up to the next end of line is ignored, for example :-

5 this 1s an example of the traditional Id Nouveau comment

o)

% used to explain a complex piece of programming

This is satisfactory to describe the finer details of some code, but what if you do not want to
delete a section of code and do not want the compiler to check it. The answer is to comment the
entire block of code and it is unreasonable to expect the programumer - to place ‘%' in front of
every line, Therefore IDA also includes a block comment facility (which may be nested),
achieved by surrounding a block of code with the special symbols '(*' and '*) * as in the
following example.

(:k
if flag then

val = min v1 v2
else

val = max vl v2;
*)

2.6 Compiler Files

The source code of an IDA program must be in a text file and comply with the file naming
conventions for UNIX with the suffix . ida so that the IDA compiler can dentify it as being an

IDA source file. The compiler produces an output file which has the . ida extension stripped off
and replaced with . 1£1.

IDA : A Dataflow Programming Language. 7

Chapter 3
Blocks, Scope and Activations

3.1 DEFINITION OF A BLOCK

A block consists of a declaration-part and a tuple-expression-part. Every block is part of a
function-declaration or a Let-block (the body of most IDA/Id Nouveau programs). All identifiers
that are declared in the declaration-~part of a biock are {ocal to that block.

Block

. . uple
—— dgclarations - expression ———-@-—b

Declarations

N 7

AN constant /

declarations

\ type /

declarations

AN variable - /

deciarations

\ fiinction -/

declarations

IDA 1 A Dataflow Programming Language.

A constant-declaration-part contains deciarations which bind identifiers to constant names
for the duration of the current block.

constant constant
identifier T 1 expression

A type-declaration-part contains rype-declarations {see Chapter 4) which allow the
programmer to create his own types to be used when designating the attributes of identifiers. The
type-declaration exists for all child blocks enclosed within the defining parent block .

type type
identifier _ [body

A variable-declaration-part contains variable-declarations {see Chapter 5) which are the
means by which the programmer associates a type (or attribute) to an identifier. The variable-
declaration exists for all child blocks enclosed within the defining parent block. Variables
occuring on the left-hand side (LHS) of an assignment must be declared within the block that the
assignment occurs in - while variables on the right-hand side (RHS) can be defined in any

preceding block.

Consz"aht Declarations

Type Declarations

Variable Decfaraﬁons

variable
identifier

type
body

A procedure-declaration-part contains procedure-declarations (see Chapter 8) which are
used to define segmments of code which are used repeatedly from different sections of a program.
The procedure-declaration contains 3 parts - the input interface (parameters into the procedure),
the body of the procedure (segment of code), and the output interface (the atmibute of the value
returned by the procedure). The procedure declaration only exists for the current block of the

program.

IDA : A Dataflow Programming Language. 9

Procedure Declarations

procedura parameter
identifier list

RETURNS
tuple .
gxpression !

A tuple-expression-part specifies the algorithmic actions (see Chapters 6) to be carried out in
executing the current block.

(parameter)
/ iist part \

paramster
{ list pant

type
identifier

Farameter List

Farameter List Part

variable /

identifier

type
identifier

OO

3.2 RULES OF SCOPE

3.2.1 Scope of a Declaration

When an identifier is declared in a declaration-part of a program, the programmer is
announcing its existence and type to the compiler. This allows the compiler to check that it is
being used correctly, each time it discovers the identifier in a portion of code. Each occurrence of
an identifier must appear within the scope of its declaration.

IDA : A Dataflow Programming Language. v 10

The scope of a declaration is the block or segment of code which contains the declaration and
all subsequent blocks nested wirhin that block (see Sections 3.2.2 & 3.2.3).

3.2.2 Redeclaration in an Enclosed Block

let {(* first block *)
var
alpha, delta, gamma : number:

asslgn
alpha = 11;
delta = 13;
gamma =

lat (* second block *)
var alpha, besta : number;

assign

.

alpha = 0.1;
delta = 0.
in
alpha + beta;
(* alpha 1s now equal to '11' *)

NS

in
(alpha + beta) / gamma;

In this code segment there are two blocks of code, one contained within the other. Now if an
identifier alpha is declared in the first block and then alpha is declared again in the second,
there is two instances of the same variable. The scope of an identifier extends to the end of the
current block and any blocks contained within it - unless, within an inner block there is another
declaration of the same variable to replace the first. On leaving the scope of the second
declaration, the attributes of the first declaration are returned to the identifier. This is the case
with the identifier alpha - it starts with the attributes of type number and the value 11 in the
first block and on entering second block these attributes are replaced with type number and
value 0. 1. On leaving the scope of the second block, and entering the scope of the first block,
the atiributes of number type and value 11 are returned to alpha.

3.2.3 Position of Declaration within its Block

The declaration of an identifier must be placed at the start of the block so that it precedes all
instances of the identifier in the following code - i.e., identifiers cannot be used until they are
declared. It is not permissible to declare an identifier more than once per block.

3.2.4 Identifiers of Standard Objects

IDA provides a set of standard (predeclared) constants, types and procedures which can be
used anywhere throughout an IDA program. The constants comprise of :-
» nil,true,and false
The types comprise of :-
* boolearn and number,
while the procedures are listed in Chapter 10.

IDA : A Dataflow Programming Language. 11

3.3 ACTIVATIONS

The activation of a block can be described as the execution of that block.l Noxmaﬂy a block is
either inactive (it is not being executed) or active (currently executing), but it is possibie to have
multiple activations of the same block if it is recursivel or mutually recursive?.

The execution of the procedure power 4 4 (as defined below), would lead to four activations
of the procedure power

def power b : number n : number returns number =
if (n = 1) then

b
else

b * (power b (n - 1)) ;
Example 3.1 - Procedure Power.

power 4 4

= 4 * (power 4 3)

=4 * 4 * {(power 4 2)

= 4 * 4 % 4 * (power 4 1)

= 4 % 4 * 4 * 4 = 256

Example 3.2 - Activations of Power 4 4.

power repeatedly calls itself, creating new activations, until the condition (n = 1) is met. When
this occurs instead of calling itself again, the procedure returns the value of b to be used in a
previous activation of the procedure. This continues-until execution returns to the initial activation
of the procedure which then returns the final value.

Every activation of the procedure (block) has a separate copy of its parameters and variables
available, therefore these copies do not in any way affect the attributes of identifiers in previous or
later activations.

It is important to rernember that identifiers may only have values assigned to them once. This is
referred to as single assignmensd due 1o the nature of the model, and before this assignment, the
value is undefined. Unlike traditional programming languages, the programmer cannot initialise
variables because when a variable is assigned its actual value, the compiler will generate a multiple-
assignment error.

LA recursive block (normaily occuring within a procedure) is one which calls itself.
2A murually recursive block (requires two or more procedures which call each other) invokes
another block which in rurn mvokes the first block again.

SIdentifiers in different activations of a loop body are logically distinct even if they have the
same name.

IDA : A Dataflow Programming Language. 12

Chapter 4
Types
A type is used by a variable to associate the set of values and the range of operators that the

variable can correctly use. A programuner can create new types to tailor a program to a particular
application. A type-declaration associates an identifier with a type.

Type Declarations

% HOAE FO
identifier ' body U

type

~N identifier 7 >
. subrange /

type

\. uple /

type

AN union /

type

\ array /

type

N stream /

type

Y function /

type

IDA : A Dataflow Programming Language. 13

When an identifier appears on the left-hand side of a type-declaration, it is bound to the
attributes on the right-hand side. A type-identifier can be used anywhere within the block in
which its type-declaration appears. In IDA, a type-identifier may not appear in its own
declaration unless it is a data structure type such as a tuple (see Section 4.3.1) or union (see
Section 4.3.2).

4.1 BASIC TYPES

4.1.1 Numbers, Strings, Booleans and nil

IDA numbers can be only of one type : number which consist of a sequence of digits with an
optional decimal point or can be expressed using scientific notation with a mantissa and an
EXponent, e.g. :-

15 15.0 0.0045 S.768E8 =6.763E-2

Strings are made up of any series of characters enclosed within double-quotes ("), Nested
strings are permitted, but must be signified by pairs of double-gquotes ().

“This is an examiple of a string”
"this is an example of 2 ""nested"” string”

There are two boolean constants (after all you can't have anymore than two - can you?),
written as

true false
Finally there is the special value - nil. It is used to terminate identifiers and fields when

using data-structures such as unions and streams and building recursive structures such as lists
and frees.

4.2 SUBRANGE TYPES
A subrange-rype is used to define a subset of values that lie within a certain range.

Subrange Type

constant ! constant
R simple simple I
expression expression

Both constants used to define a subrange must be of type integer, with the first constant (referred
to as the lower-bound) being less than the second constant (upper-bound). Subranges are most
commonly used to declare the dimension of arrays (see Section 4.3.3), and an error is given if an
attempt is made to access a value outside the bounds,

iDA 1 A Dataflow Programming Language. 14

4.3 STRUCTURED TYPES

4.3.1 Tuple Types

A tuple-rype is a stucture which consists of a fixed number of components called fields, each
of which may (but doesn't have to) be a different type. One of the fields can even be of the same
type as that being defined.

Tuple Type
- field fist —@—» |
Field List
type
body

()
N

4.3.2 Union Types

A union-type is a structure which consists of a fixed number of components called fields. The
fields can even be of the same type as that which allows recursive data-structures {section 5.4
explains the difference berween tuples and unions).

field list -—©——>

An array-type can be likened to a one-dimensional table of components that are all of the
same type (called the component-type of the array) and addressable by an index.

Union Type

4.3.3 Array Types

The component-type of the array is determined by the type following the reserved word o %,
The size of the array is determined by the subrange and this means that IDA arrays must be
indexed by integers. Although the user can only work with variables of type number, the
cornpiler converts these into integers so that the arrays can be indexed.

IDA : A Dataflow Programming Language. 15

Array Type

subrange
type

If the subrange field between the parenthesis '(..")' contains more than one subran ge, then this
denotes a muiti-dimensional array with the number of subranges representing the number of
dimensions. In the example below, there are 3 subranges, so hospital is a 3-dimensional array
of type boolean used to determine if a bed is vacant.

levels = 1,.10;

rooms = 1..8;
baeds = 1.,.4;
hospital = array (levels, rooms, beds) of boolean:

Exampie 4.1 - Array Example

4.3.4 Stream types

A stream-type [9] is a theoretically infinite list of heterogenecous data items used for file
input/output and producer/consumer applications.

Stream Type

' | type

4.4 PROCEDURE TYPES

A procedure-rype is used to declare a procedure to be used as an object capable of being
passed to a procedure as a parameter or returned as the result of a procedure (see Chapter 8).

FProcedure Type

‘—(PROCEDURE } type list —GETURNS "“‘ idgﬁ:ﬁer >

IDA : A Dataflow Programming Language., 16

Type List
‘ type list
/ part \
»-
type list /;\\ /

Type List Part

ype
identifier

4.5 IDENTICAL AND COMPATIBLE TYPES

When writing IDA programs there are three possible conditions concerning the types of
identifiers and expressions. These are that the types are:

1) identical,

2) comparible, and

3) assignment-compatible. ‘ :

Sometimes it is necessary to meet all three conditions and other times it is necessary (o meet
only one.

4.5.1 Type Identity

Tynes
scale = number;
subscale = scale;

var
averags, present : number;
bottom, top : scale;
start, finish : subscals;

Example 4.2 - Type Identity Example

If we take two identifiers - A and B, we can refer to them as being of identical type if .-
A and B use the same type-identifier. In the above code segment, average and present
use the same type-identifier.
*A and B are declared with equivalent types. In the above code segment, start and top
have identical rypes because subscale, scale and number are all equivalent.

IDA : A Dataflow Programming Language. 17

In the following circumstances, it is imperative to have identical types :- ‘
« The parameters used in a call to a procedure must be the same type as those in the
declaration of the procedure (see Chapter 8).

* The result returned by a procedure must be the same type as that declared in the
procedure definition (see Chapter 8).

4.5.2 Type Compatibility

As mentioned previously, it is sometimes necessary for types to be compatible. This is often a
requirement of assigament - ie., that the type of the right-hand side of the assignment is
compatible with the type of the identifier on the left-hand side.

Two types can be described as comparible, if:

+ Both types are identical {see Section 4.5.1),

+ Both types are of type number, and

* One type is a subrange and the other is of type number.

4.5.3 Assignment Compatibility

Assignment compatibility is necessary whenever an identifier is given a value either directly
using an assignment statement, indirectly when passing parameters procedures,

If we imagine an assigment statement (id = exp), where id is of type A and exp is of type
B, then we can say that exp is assignment-compatible when:
+ Aand B are of identical types,
* Ais the type number, and B is a subrange-type, and
* Alsabasic-type, and exp is the accessing of a saucture-type with base-type
identical to A.

An error will be generated if assignment-comparibility is required, and none of the above
rules are met. '

IDA : A Dataflow Programming Language. 18

Chapter 5
Variables

5.1 Variable Declarations

A variable is a name used to identify an expression, value or data-structure. A varigble-
decilaration is a list of identifiers, followed by their types, which informs the compiler of what
type can be bound to the identifiers.

Variable Declarations

()
~

variable fype
identifier body

A variable-identifier can be used anywhere within the block in which its declaration appears.
In [DA, there are no restrictions placed on the length of variable-names.

Example of variable-declarations :-
balance, deposit, repayment : number:
cancel, continue : boolean:
greeting : string;
matriz : array([l..5,1..5] of number;
tuple_x : tuple (number;number;boolean) ;
Blf : union (boolean;number) ;

5.2 Variable References

Variable

variable
NEW/NEXT identifier

variable
identifier g

tuple
exprassion

O

IDA : A Dataflow Programming Language. 19

The use of a variable signifies either a reference to :-
+ the value bound to the identifier if it is of a simple-type,
+ the component of the identifier if it is of a structured-type, or
« the data-structure if the identifier is of a structured-type .

5.3 Qualifiers

As the above segment from the IDA syntax charts show, a variable-reference consists of a
vartable-identifier followed by zero or more qualifiers. Each qualifier changes the meaning of the
variable-reference.

In IDA, there is only need for one type of qualifier which is used with arrays. Using matrix
from the above variable-declarations as an example, the use of the identifier by itself is a
reference to the entire array-variable :-

matrixg

While the use of the identifier followed by an array index is a reference to a particular component
of the array-variable :-

matrix{row,column!

5.4 Accessing components of Tuples and Unions

Although these types of data-structures do not have qualifiers, their components can be
extracted using a form of pattern-marching. Using the variable-declarations from above :-

class size, balance, cancel = tuple x

This is an example of accessing the components of a tuple. The order of the identifiers on the
LHS must match so that their types are compatible with the types of the components within the
tuple. Therefore, class _size is assigned the value of the number field within tuple =z,
balance is assigned the value of the number field and cancel is assigned the value of the
boolean field.

Unions use the same format to access their fields. Consider the following segment of code :-

types
glement = union{number;element) ;

Var
list0, listl, list2, 1list3 : element;
vall, wvalZ, wall3 : number:

% code to assign values to variable "listO"

i

5 accessing first 3 components of variable "ilistQ"
vall,listl = 1list0;
valZd,list?2 = listl;
vall,list3 = list2;

Exampie 5.1 - Union Access

IDA : A Dataflow Programming Language. 20

This example shows how unions can be used to define a recursive data-structure, and in this
case a list. The last three statements are examples of how 1o access the components of a union.
The order of the identifiers on the LHS must match so that their types are compatible with the
types of the components within the union. The first statement, takes the valne of the first number
field and assigns it to vall, while the value of the e lement field is assigned to 1ist 1. Thisis
in effect a form destructive head and tail operator. The second number component of the criginal
1ist0, is obtained by extracting the value of the number field from 1ist 1, the tail of the
original 11st 0. Finally the third number component of the original 11st0, is extracted from
listZ, thewmilof Lisvl.

IDA : A Dataflow Programming Language. 21

Chapter 6
Expressions

In IDA, expressions normally consist of operators and operands. An operator is usually an
arithmetic function such as '+, and an operand is a value/argument used by the operator. As in
most programming languages most of the operators are diadic - that is they require two operands
though there are some monadic operators such as -' and not, which require only one operand.

When an expression consists of two or more operators, certain rules are used to determine the
order in which the operators execute. Taking the example below :-

3% 3 4+ 1 / 4 = 9,25
(3 * 3 + 1)y / 4 = 2.5
(3 * (3 + 1)y / 4 = 4
3% {3+ 1) / 4 = 3
307 {3+ 1/ 4 = 9.7

it can be seen the value that is represented by an expression can vary quite considerably
depending on the order in which the operators are used and parentheses () can be added to make
the code more readable for the programmer and to override the default execution order of the
operatorst,

The rules used to determine how an expression is evaluated are referred to as precedence

rules :- ‘

* An operand appearing between two operators of differing precedence is associated with
the operator of higher precedence. '

* An operand appearing between two operators of the same precedence is associated with
the left-most operator.

* An parenthesised expression is always evaluated before is associated with an ODErator.

Operators Precedence Categories
not highest unary operators
*®, /, mod, and second "muitiplying” operators
+,-,0r third - "adding" operators & signs
=, <>, <, > .
lowest relational operators
<m’ et

Tabie 6.1 - Operator Precedence

The precedence rules are represented by the syntax charts for expressions which are made up
from simple-expressions, terms and factors (see Table 6.1).

"'When creating conditions| expressions for

subexpressions must be parenthesised :-

use in IF and WHILE statements {Chapter 7), all

if {(count<=0) or (count>=9}) and {not quit)) then

IDA 1 A Dataflow Programming Language.

The syntax chart for a factor is shown below:

Factor

<

identifiar

constant

22

fiteral

iuple

exprassion \\-/1

tuple

\
(hor)

expression

factor

function

simpie simple
aexpression expression
(tuple)
expression .)

IDA @ A Dataflow Programming Language.

A constant literal can be any one of the following values :-

Constant Literal

unsigned

\ number / -
g——— string ———/

! TRUE
——— FALSE ——

A unsigned number represents a numeric value with the following syntax :-

: : ©unsighed
' integer
unsigned

Unsigned Number

integer >

LC\ ~ =
_/

Unsigned Integer

«Elyn

IDA: A Dataflow Programming Language. 24

The identifier branch of the factor syntax represents 3 IDA constructs - an identifier for a
named value, an array and a procedure call where the parameters are represented by a tuple-
expression. Identifiers are not case-sensitive or restrained by size. Here are a few examples -

a

V2

equal to 1007

have a beer?

av_class _size

Identifier

ietier

letier \ /j\) ' >
7 S

The function branch represents the major statements available in IDA - 1 f, while, for,
let, and sequence (see Chapter 7).

The array branch of the factor syntax represents an Id Nouveau construct for the dynamic
allocation of arrays. This has not been implemented in this release.

examples of factors -

2.3 { constant literal }
matrix[row, column] { array reference }

copy lista,listb,lsize { procedure call }

not cancel { negation of a bdolean }

(3+ 4, v2, cancel)} { bracketed tuple~expression }

The syntax for a rerm is shown below :-

Term

factor

IDA : A Dataflow Programming Language. 25

The syntax for a simple-expression is shown below :-

Simple Expression

term -

examples of terms - examples of simple-expressions :-
alpha * beta - 6
4z /7 nett - tax
cancel and error resultl + result?

left or right

The syntax for an expression is shown below :-

Expression

simple

expression) / >
simple

R0900¢

The syntax for an ruple-expression is shown below :-

gxpression

Tuple Expression

gxpression

- ¥ Programming Language. 26

essions :- examples of wple-expressions

eRxp 1, 2! 3

» stop symbol fact-4, cancel, 9 * g + 1
top_ score a < b, cramps?, num _Cramps

i1{ equality test & assignment operator }

ORS

on, the IDA operators are discussed and tables are presented which give the
ition of operator, operand types, and type of result.

c operators

tors are used when writing mathematical expressions. As can be seen from the
type of any operation is always the type number.

s | Operation | Operand 1 Type Operand 2 Type Result Type
addition
subtraction
number number number
multiplication
division

Table 6.2 - Binary Arithmetic Operators

serators | Operation Operand Types Result Type
+ identity
number number
i sign
negation

Table 8.3 - Unary Arithmetic Operators

perators

‘rators take only operands which evaluate to be boolean and they return boolean
mctions are those used in binary logic. They are normally used to control the
trtain segments of code and are used as conditions within IF and WHILE

IDA : A Dataflow Programming Language. 27

Operators | Operation Operand Types Result Type
or disjunction
and conjunction boolean boolean
not negation

Figure 6.4 - Boolean Operators

6.1.3 Relational operators

Relational operators are also used to control the execution of IF and WHILE statements and
are often used to produce operands for binary operators. They are used for comparing size of
operands and testing for equality of operands.

Operators | Operation Operand Types Result Type

= equal

<> not equal
< less boolean

boclean

> greater number

<= less / equal

>= greater / equal

Table 6.5 - Relational Operators

6.2 PROCEDURE CALLS

A procedure call is the IDA construct used 1o invoke the segment of code called a procedure.
The declaration of the procedure outlines the interface into and out of the code segment and
specifies the data required for its operation, the procedure of its body and the result the procedure
returns. As the procedure always returns a value, its activation can be used as an expression. If
the procedure-declaration includes a list of formal-pararneters, then the procedure-call must have
a matching list of actual-parameters.

IDA : A Dataflow Programming Language.

FProcedure Calf

- m—{dentifier

tupte
expression

examples of procedure calls :-
matmuit matl mat? size
fact n
append n, list

28

IDA 1 A Dataflow Programming Language. | 29

Chapter 7
Functions

In IDA, functions must return values to cciinply with the functional nature of the language.
The functions which make up the body of any IDA program, identify with the steps of the

algorithm encoded by the program. As well as the simple functions already discussed (ie. -
expressions - see Chapter 6), there are five structured functions used to embody sections of code.

Function

if
function / b

for A

function

while /

function

e

let /

function

Structured functions can consist of both simple and swuctured functions, that are to be
executed conditionally (IF function), repeatedly (FOR and WHILE functions), as preparation for
a compiicated algorithmic step (LET function) or for input/output (SEQUENCE function).

7.1 The IF function

If Function
booledan ' tuple
' B . | expression THEN - expression :

uple
exprassion »

The IF statement is a conditional statement with two results. The result returned by the
boolean expression is the condition which determines which of the two results is to be returned. If
the condition is true, then the tuple-expression which follows the keyword then is evaluated. If
the condition is false,then the tuple-expression which follows the keyword e 1se is executed. To

maintain the functional nature of the language both branches must be supplied so that the
statement always returns a value,

IDA : A Dataflow Programming Language. 30

examples of IF functrions -

if vall<val? then
vall

alse
vall;

if do_cos then
cos X

else
sin %3

7.2 LOOPING FUNCTIONS

The looping functions in IDA are represented by two constructs reminiscent of many other
programming languages - FOR and WHILE. They both consist of an expression which controls
the repeated execution of the collection of functions making up the loop body.

tuple ,
i RETURNS i gxprassion

Loop Body

assignment

As can be seen from the syntax chart, the loop body contains assignments followed by a
return tuple-expression. The return value maintains functionality and is the result of the loop
execution. It is important that the user notes that identifiers used on the left-hand side (LHS) of
assignments will be assigned a new value each time through the loop body. The reserved word
next is introduced, to prefix a variable which is updated on esch iteration of the loop and it
creates data dependencies between these iterations {this will become clearer through examples).

7.2.1 The FOR function

The FOR function causes a single or a collection of functions to be executed a certain number
of times. The number of repetitions is determined by a range of values which are expressed in the
opening line. After the reserved word for, a variable identifier is supplied - this is referred to as
the control variable and always contains a value within the defined range. The control variable is
followed by the range which consists of an inital value (prefixed by from), a final value
(prefixed by to/downto) and an optional third value (prefixed with by} which determines how
large to make the increments through the range. As long as the value of the control identifier
remains within the range, the loop body will be executed.

IDA : A Dataflow Programming Language. 31

For Function

simple

exprassion ™\

identifier

\

simpie (] oop
expression KDO body —>

simple
expression

BY

examples of FOR functions -

for 1 from leowbound to highbound do
- next total = total *+ 1i;

part totalli] = total
returns total;

for dir from 0 to 360 by 10 do

axis = dir mod 90;
next answear = 1f (axis = 0) then
axis
alse

answer + 1;
returns answer;

From the above example it can be seen that the identifier axis is assigned a value through
the first statement and as this value is not needed outside the current iteration it is not preceded by
next. On the other band, the identifier answer is sometimes incremented in the else branch of
the IF statement and its value is used in the next and subsequent iterations of the loop body,
Hence, it is preceded by next.

7.2.2 The WHILE function

The WHILE function depends on a conditional expression to determine the number of
iterations of the loop body. As long as the value of the boolean expression is true, the loop body
will be executed, and as soon as the expression returns false then the body is no lenger executed
and the result returned. Inside, the loop body therefore, is a function which will eventually result
in the termination of the loop by causing the conditional expression to be false.

IDA : A Dataflow Programming Language. 32

While Function

— WHILE

examples of WHILE functions :-

booiean
expression

loop
body Eaan o

while epsilon > 0.001 do

next sqrt = ((x / sgrt) + sgrt)y / 2;

next epsilon = abs (x -~ next sgrt * next sqrt)
returns sqrt;

In this example, as long as epsilon remains greater than a certain value the body will be
‘executed. Note that in the second function the keyword next appears on both sides of the
assignment operator. The importance of it on the LHS has already been discussed, but its use on
the RHS is required to define which value of sqrt is to be used. In this case the value used is not
that of the previous iteration but that calculated in the preceeding function.

while (not empty) and (month <= 12) do
next empty = (rainfall{month! = 0)
next month = month + 1

returns empty;

This example shows how control of the loop body is dependent on both statements to
continue execution. If a month is found with no rainfall or the number of months extends outside
of the present year then the loop is terminated.

7.3 The LET function

The LET function prepares a group of identifiers for use in a complicated expression, and is
divided into two parts - the Let-Assignments where expressions are bound to identifiers, and the
Let-Return where the result of this function is calculated. The Let staternent is unusual in that it is
the only construct where it is permissible not to return a value and this is done with a pair of
empty parenthesis in the Let-Return.

examples of LET functions :-

This exarple simply shows a value being bound to an identifier for use in in expression.

let

X = 2
in

X+ X

This example demonstrates how a Let-statement is used to prepare identifiers for use in a more
complicated expression (here it is a WHILE statement). The two variables in the Let-
Assignment section are initialised, so that they can be used to control the WHILE statement.

IDA : A Dataflow Programming Language. 33

let
month = 1;
empty = false
in :
while {(not empty) and {month <= 12) do
empty = if {rainfall{month] =) then
true
else
false;

next month = month + 1
return empty;

This examples shows the diversity of places the let-statement can be used. It can be used in the
Let-Assignments section of a Let-statement to create one of the bindings for the Let-Return. Tt
can also be used in the Let-Return section. The introduction of a nested Let-statement is used to
awwamw&mmﬁommamwnmwmeMawﬁ%bcmbemd&m&%@mdmﬁ&mmvﬂm
{ in this case x = 4 in one Let-statement and x = 7 in another).

let
X2 = let
X = 4
in
X * Xy
X3 = 3 * 3 * 3
in
let
a = %2 + x3;
o= 10;
x = 7
in

(2 + b) / x;

7.4 The SEQUENCE function

This function closely resembles the structure of the LET function but is used with input and
output. (see Chapter 9).

Let/'Sequence Function

w_{:EEWSEQUENCE :}qi——u—— declarations i\\
ASSIGN
. tuple
assignment %{D‘ expression -

J

()
N

IDA : A Dataflow Programming Language. 34

Assignment

parameter
fist

uple

variable expression

7.5 Commands

The above syntax for an assignment, shows that it is permissible not to provide an identifier
on the left-hand side to bind to the resulting expression. This is referred to as a command, which
are extremely useful when working with arrays.

def array expr returns number =
Y __SHX

let
const
n o= 10;
var
® : array(l..n} of number;
i, sum : number;
def £ i:number returns number = i * 8;
assign
= for 1 from 1 to n do
®[1] = £ 1;
returns () »
sum = 0
in
for 1 from 1 to n do
next sum = sum + =[1]

returns sum;

Example 7.1 - Command Example

In this example above it can seen that a command is used in the Let-Assignment. It is making use
ofaforfmmﬁonamimepnxemmeftoﬁnﬁmehnmnmofﬁwanﬁyxﬁﬂﬁsmanexmnmeofa
side-effect expression which alters an identifier without explicitly showing it. The other unusual
construct is the object returned by the same foxr function - the null tuple - represented by ()
These two features combined, form a powerful means to build an aITay.

IDA : A Dataflow Programming Language. 35

Chapter 8
Procedures

8.1 Procedure Declarations

A procedure-declararion creates the input and output interface needed to use the body of
code associated with the procedure identifier (see Section 6.2).

Procedure Declarations

procedurs parameter
DEF identifier list

fype
identifier

wuple
expression

(parameter >
/ list part \

RETURNS

Parameter List

»-
barame‘ter
list part
Parameter List Part
variabie type
identifier icentifier

a5
NG

The procedure identifier specifies the identifier for the procedure and the parameter list
defines the input interface. The parameter list represents the values that need to be supplied by
the programmer when the procedure is to be invoked. The type identifier after the keyword

IDA : A Dataflow Programming Language. 36

returns determines the type of result that will be produced by the procedure, and also sets up
the output interface. The tuple-expression represents the body of the procedure.

A procedure is activated by a procedure call (see Section 6.2), which supplies the procedure's
identifier and the actual parameter list (if needed}.The tuple-expression which constitutes the
procedure body is evaluated using the parameters as operands to internal expressions as required.
If the procedure identifier appears within the body of the procedure then it is said to be recursive
(see Section 3.3) as it calls itself,

Example of a procedure-declaration :-
def fact n:number returns number =
if (n = 0) then
1
alge :
n * (fact (n - 1));

&.2 Parameters

The formal parameter list declared as part of a procedure declaration declares the parameters
of the procedure. Each declared parameter is local to the procedure being declared and can be
referenced by its identifier in the procedure body.

In IDA, each parameter supplied as an argurnent to a procedure-call must be an expression,
and 1ts type must be the same as that of the formal parameter. The current vaiue of the expression
1s assigned to the formal parameter of the function.

8.3 Parameter List Compatibility

Parameter list compatibility is required between the parameter lists of the procedure
declaration (formal parameters) and those supplied in the procedure call (actual parameters). Two
- parameter lists are said to be compatible if they contain the same number of parameters and the

types of parameters in the corresponding positions match. Two parameters match if they are of
Identical type.

IDA : A Dataflow Programming Language. 37

Chapter 9
Input / Output

This chapter describes the standard ("built-in") procedures which are included in IDA, from
interfacing with the user of an IDA program. This allows the programmer to access standard
input and output as well as dynamic files and is achieved through the sequential execution
SEQUENCE statement (essential for effective Input/Output).

In IDA, Input/Output (I/O) is achieved through the use of files. Although most other
languages have their own special file-type, IDA uses one of existing types to represent files -
streams, and to declare a file-identifier, the programmer declares its type as being stream of char.

A file variable may be bound to an external file on the host. This file will most Likely be a
named collection of data stored on a peripheral device or, depending on the device it may be the
actual peripheral device. A file variable not associated with an external file or device, is described
as being anonymous. A file variable associated with an external device will normally be
associated with one of the three predefined file identifiers which are opened automatically as the
execution of the program begins:

* stdin { the input device - a read-only file normally associated with the keyboard),

+ stdout (the output device - a write-only file normally associated with the

terminal screen), and

* stderxr (the error report file/device - a write-only file normally associated with the

terminal screen).

For a file variable to be used it must first be opened. An existing file must be opened via the
open procedure, and a new file must be created and opened using the create procedure. Both
procedures open the file and move the file pointer to the start of the file.

To access the contents of the files, the read and readln procedures are used, while to
update & file or add information to the file the write and writeln procedures are used. There
are two final procedures used during I/O - axists, for checking if a file already exists and
close, for closing a file.

9.1 SEQUENTIAL EXECUTION

" To provide a sensible mechanism for [/O, it is necessary (o permit sequential operations,
however, providing sequentiality by explicit data dependencies at the source level is not a
satisfactory solution, particularly in a single assignment language. IDA provides a special
construct that causes top-level sequentiality. The reduction in concurrency can be reduced by
only enforcing the sequencing for each line or function. Any operations inside these will run in
paratlel as will the evaluation of the arguments of each sequenced line. For example :-

= writeln stdout a * b + o * d, a - b;
writeln stdout "hello world!";

il

will correctly output the result of the arithmetic expression first, followed by the string "hello
world!". Of note is the fact that the expression will still be evaluated in parallel, i.e., both the
multiplications and the subtraction simultaneously, followed by the addition. Whilst this may
seem to be of marginal improvement over totally sequential machines, it is worth noting that
those expressions can be arbitrarily complex. Using this approach, it is quite an easy martter for
the compiler to generate the required seguencing instructions rather than the programmer
explicitly (and tediously) doing so. The actual syntax duplicates the LET statement but replaces
LET with the keyword SEQUENCE. So the complete program o perform the previous example
will look something like this:

IDA : A Dataflow Programming Language. 38

segquence
Const
a
o)
o)
d
assign
writeln stdout a * b + ¢ * 4, a - b;
= writeln stdout "hello worldi®
in

{1 s

I

AT TR TER

1
2
3
4

If H

i

Naturally, the use of the SEQUENCE statement can occur at any level of scoping and its
correct operation is up to the programmer. Also, any opération can be sequenced in this manner,
not just YO.

9.2 STANDARD I/O PROCEDURES

This following terms are used throughout this section:

<file> - stream of char (including stdin, stdout and stderr). Only ASCII files are
supported.

<filename> - file identifier (must be a literal string).

<ErTor> - an integer returned by the procedures to signify success or failure. A value of

{ is success, while any other value signifies failure.
<arguments> - blank separated list of variables.
[ocn] - contents of brackets may be optionally supplied by programmer.

9.2.1 The OPEN Procedure
<egrror> = open <file> [<filename>]
The OPEN procedure opens an existing file to be accessed via <file> and using the physical

file <filename>. <file> is a unique file identifier generated by OPEN. It is an error to open a non-
existent file. A temporary file is opened if no <filename> is supplied.

9.2.2 The CREATE Procedure
<error> = greate <file> [<filename>]
The CREATE procedure creates a new file, where <file> and <filename> are the same as for

OPEN. It is an error to create an existing file. A temporary file is opened if no <filename> is
supplied.

9.2.3 The CLOSE Procedure
<error> = close <file>

The CLOSE procedure closes <file> which has been previously opened or created. It is an
€TToT 10 attempt to close <file> when it has not previously been opened or created.

IDA : A Dataflow Programming Language. 39

9.2.4 The EXISTS Procedure

<boolean> = exists [<filename>]

The EXISTS procedure returns true if the specified <filename> exists; false if the file
specified does not exist. This permits the error free usage of OPEN and CREATE.

9.2.5 The READ Procedure

<error> = read <file> <arguments>

The READ procedure reads the specified <arguments> from the specified <file>. It is an error
to read from a file <file> that has not been opened or created. :

9.2.6 The READLN Procedire
<error>» = readln <file> [<arguments>)

As for READ with the exception that after all <arguments> have been read, all remaining
vaiues on the <file> are skipped until a newline or end of file

9.2.7 The WRITE Procedure

<error> = write <file> <arguments>

The WRITE procedure writes the specified <arguments> to the output <file> after evaluation
of the <arguments>. Output field widths can be specified as in Pascal with the "' operator. After

evaluation of the <arguments>, the values being output must be scalar. It is error to write to a
<file> that has not been opened or created.

9.2.8 The WRITELN Procedure
<error> = writeln <file> [<arguments>)

As for WRITE with the exception that a newline is written directly after the <arguments>
have been written to the output <file>,

IDA : A Dataflow Programming Language. 40

A simple I/0 example -

{' *

This simple program opens a file and writes out the result of a
very simple expression together with a string. It is not
possible to read strings as they are non-scalar, but characrers
may be read. The result of the I/0 operations are not tested for

since the EXISTS function checks for files being overwritten.
*)

const
a = 10;
h o= ~10;
def writeocut returns () = {(* file 1/0 seguencs *)
sequence :
var
¢ ¢ number:
infile, outfile : stream of char;
assign
= open outfile "filename";
= writeln outfile a+bk, "hnello world!";
close outfile;
= open infile "filename";
= readin infile c¢;
= writeln stdout "¢ = " ¢j
= ¢lcse infile

I

in
()

def error = (* errcr routins *)
let
= writeln stderr "filename already exists ..."
in

{32

if exists "filename" then {(* main program *)
writeout

else
erroxr;

Exampie 9.1 - Input/Qutput Example

IDA : A Dataflow Programming Language. 41

Chapter 10
Standard Procedures

This section describes all the standard {"built-in") procedures in the IDA programming
language except for the [/O procedures already discussed in Chapter 9. ‘

10.1 ARITHMETIC PROCEDURES

As well as the simple operators given in the syntax chart of expression, IDA provides others for
some of the more complicated mathematical functions.

10.1.1 The INR operator

Returns the inner-products of two arrays.

10.1.2 The EXP operator
Returns the exponential of a numeric value.

result type: number
parameter list: exp arg

This call returns the value of e2X9, where ¢ is the base of the natural logarithms.

10.1.3.The PWR operator
Returns the value of a numeric value being raised to the power of a second numeric value.

result type: number
parameter list: pPwr argl arg?

This call returns the value of argl1arg2,

10.1.4 The ABS operator
Returns the absolute value of a numeric value.

result type: number

parameter list: abs arg

This call returns the absolute valge of arg -ie,ifarg is negative then ~arg is returned,
otherwise arg is returned.

IDA : A Dataflow Programming Language. 42

10.1.5 The LNE operator

Returns the natural logarithm to base e of a numeric value.

result type: number
parameter list: lne arg

This call returns the natural logarithm of arg - 1.6., loge arg.

10.1.6 The LN2 operator
Returns the natural logarithm to the base 2 of a numeric value.

resuit type: numper
parameter list: in2 arg

This call returns the natural logarithm of arg - i.e.,, logy arg.

10.1.7 The LOG operator
Returns the natural logarithm to the base 10 of a numeric value.

“result type: number
parameter list: log arg

This call returns the natural logarithm of arg - L.e., log1g arg.

10.1.8 The SQT operator
Returns the square-root of a numeric value.

result type: number
parameter list: sgt arg

This call returns the square-root of arg - i.e., Varg.

10.1.9 The SQR operator
Returns the square of a numeric value.

result type: number
parameter list: sqr arg

This call returns the square of arg - i.e,, arg * arg, or argZ,

IDA : A Dataflow Programming Language.

10.1.10 The SIN operator

Returns the sine of a numeric value.

result type: number
parameter list: sin arg

This call returns the trigonometric sine of arg.

10.1.11 The COS operator
Returns the cosine of a numeric value.

result type: number
parameter list: cos arg

This call returns the wigonometric cosing of arg.

10.1.12 The TAN operator
Returns the tangent of a numeric value.

result type: number
parameter list: tan arg

This call returns the wrigonomeiric tangent of arg,

10.1.13 The ATN operator

Returns the arc_tangent of a numeric value representing a radian.

result type: number
parameter list: atn arg

This call returns the trigonometric arc_tangent of axq.

10.1.14 The ASN operator
Returns the arc_sine of a numeric value representing a radian.

result type: numeric
parameter list: asn arg

This call returns the trigonometric arc_sine of arg.

43

[DA : A Dataflow Programming Language. 44

10.1.15 The ACS operator
Returns the arc_cosine of a numeric value representing a radian

result type: number
parameter list: acs arg

This call returns the rigonometric arc_cosine of arg.

16.1.16 The RND operator

Converts a real constant literal into an integer constant literal.

result type: integer
parameter list: rnd arg

This call returns an integer result which is the value of arg rounded to the nearest whole number.
If arg is exactly halfway between two whole numbers or larger than the halfway value, the result
1s the larger absolute number. If arg is smaller than the halfway value, the result it the smaller
absolute number.

16.1.17 The TRC operator
Converts a real constant literal into an integer constant literal.

result type: _lnteger
parameter list: tre arg

This call returns an integer result which is the value of arg rounded to the nearest whole number
between O and arg inclusive.

10.1.18 The FLT operator

Returns a real constant literal which represents the result of the left-hand side of arg subtracted
from the whole arg.

result type: nunber
parameter list: £flt arg
example: x = flt 5.657; where x now egquals 0.657

10.1.19 The SUCC operator
Returns the successor of an integer constant literal,

result type: integer
parameter list: succ arg

This call returns the successor of arg.

IDA : A Dataflow Programming Language.

10.1.20 The PRED operator

Returns the predecessor of an integer constant literal.

result type: integer
parameter list: pred arg

This call returns the predecessor of arg.

10.2 SORTING OPERATORS

10.2.1 The GTS operator

Tests two literal values and swaps them if the first value is smaller than the second.

result type: number or char
parameter list: gts argl argZ

example: %,y = gts 5 5.657; where x now equals 5.657,
‘ y now equals 5

10.2.2 The LTS operator

Tests two literal values and swaps them if the first value is greater than the second.

result type: number or char
parameter list: lts argl arg?
example: X,y = lts m b; where x now equals b,

Y now egquals m.

1

(* 1ff m is not less than b *) .

10.2.3 The MAX operator

Returns the greater of two literal values.

result type: number or char
parameter st max argl arg2
example: big = max 10 5;where big equals 10.

16.2.4 The MIN operator
Returns the smaller of two literal values.

resuit type: number or char
parameter list: min argl argZz

example: tiny = min 10 5; where tiny equals 5.

IDA : A Dataflow Programming Language.

10.3 GENERAL PROCEDURES

16.3.1 The RNG operator

Determines if a literal value is in a range of values.

result type: number or char
parameter list: rng argl arg?2 arg3
example: rng 5 10 20 result = false.

46

rng argl argZ arg3 -rewrns rue if argl is between arg? and arg3, and false

otherwise.

10.3.2 The WDW operator

Sets the upper limit of a range of values.

result type: number or char
parameter list: wdw argl arg2 arg3
example: wdw 5 10 20 result = 5,

wdw argl arg2 arg3 -returns
argZ ~ifargl < argZ,
arg3 -ifargl > arg3,
arygl -otherwise.

10.3.3 The ORD operator

Returns the ordinal number of a character

result type: integer
parameter list; ord arg
example: ord 'a’ result = $7 (Ascil wvalue).

ord arg -returns the ordinality of arg, i.e., the Ascii value of arg.

10.3.4 The CHR operator

Returns the char value to an integer constant literal.

result type: char
parameter list: chr arg
example: chr 32 result = * ' (blank/space).

chr arg - returns the char value whose ordinal number is ara.

For any char value arg, the following is always true:
chr (ord arg) = arg.

DA : A Dataflow Programming Language. : 47

ACKNOWLEDGEMENTS

The author wishes to especially thank Mr. Neil Webb, who wrote the syntax-checker in the
compiler and was responsible for the I/O extensions to IDA, Mr. Stephen Brobst (M.LT.) who
gave invaluable advice on the implementation of I-structures and the general semantics of Id
Nouveau. I would also like to thank the other members of the Software Stream of the project -
Mr. Mark Rawling, Mr. Simon Wail, our external consuitant Dr. K. Ramamohanarao, and the
Stream Leader - Mr. Bob Pascoe, for their assistance and advice. Thanks must also go to the
Hardware stream, Mr. Alan Young and Mr. Ian Donaldson, and in particular, the Proiect Leaders
- Dr. David Abramson and Dr. Greg Egan. A number of IDA examples have been converted from
Id Nouveau source code obtained from M.I.T.'s Laboratory for Computer Science. The Parailel
Systems Architecture Project at RMIT is being supported by the Commonwealth Scientific and
Industrial Organisation (CSIRO) under an Information Technology joint research grant.

REFERENCES

1. D. Abramson & G.K. Egan, "The RMIT Data Flow Computer : A Hybrid Architecture”,
Royal Melbourne Institute of Technology Technical Report, TR-112-057R, 1987.
To be published in The Computer Journal.

2. D. Abramson and G.K. Egan, "An Overview of the RMIT/CSIRO Parallel Systems
Architecture Project”, Royal Melbourne Institute of Technelogy Technical Report, TR-112-065R,
1987.

Proc 11th Australian Computer Sciences Conference, Brisbane, 1988

Republished in Australian Computer Journal, August 1988.

3. G.K. Egan, "Dataflow : Its Application to Decentralised Control", Ph. D. Thesis, Department
of Computer Science, University of Manchester, 1979

4. R. Nikhil, K. Pingali and Arvind, "Id Nouveau”, Computation Structures Group Memo 265,
Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology
Square, Cambridge, Massachusetts

3. Kazanori Ueda, "Guarded Horn Clauses”, Doctor of Engineering Thesis, University of Tokyo,
Graduate School, 1986

6. McGraw, et al, "SISAL : Streams and Iteration in a Single Assignment Language, Language
Reference Manual", Lawrence Livermore National Laboratories, M146

7. M. Rawling and C.P. Richardson, "The RMIT Data Flow Computer : DL1 User's Manual”,
Royal Melbourne Institute of Technology Technical Report, TR-112-058R, 1987 :

8. Arvind, D.E. Culler, R.A. Tannucei, V. Kathail, K. Pingali and R.E. Thomas, "The Tagged
Token Dataflow Architecture”, Laboratory for Computer Science, MIT, July 1983

9. K.S. Weng, "Stream Oriented Computation in Recursive Data Flow Schemes", Technical
Memo 68, Laboratory for Computer Science, MIT, Oct 1975

IDA 1 A Dataflow Programming Language. 48

A) I.B. Dennis and D.P. Misunas, "A Preliminary Architecture for a Basic Dataflow Processor”,
Proc 2nd Annual Sympostum Computer Architecture, New York, May 1975

B) J.B.Dennis, G.A. Broughton, and C.K.C Leung, "Building Blocks for Dataflow Prototypes",
Proc 7th Annual Symposium Computer Architecture, La Boil, France, May 1980

C) I.B. Dennis, G.R. Gao, and K. W. Todd, "Modelling the Weather with a Dataflow
SuperComputer”, IEEE Trans. Computers, Vol -33, No 78, July 1984, pp 592-603

D) Arvind and R.A. Iannucci, "A Critique of Multiprocessing von Neumman Style”, Proc 10th
Annual Intl Symposium Computer Architecture, Stockholm, June 1983, pp 426-436

E) Arvind and K.P. Gostelow, "The U-Interpreter”, Computer, Vol 13, No. 2, Feb 1982, pp 42-50

Fy J. Gurd and 1. Watson, "Data Driven Systems for High Speed Parallel Computing - part 2;
Hardware Design", Computer Design, July 1980, pp97-106

G) Guy Lewis Steele, Jr. and Gerald Jay Sussman, "SCHEME : An Interpreter for Extended
Lambda Calculus®, Tech. Report 349, MIT Artificial Intelligence Lab, Dec 1975

H) Guy Lewis Steele, Jr. and Gerald Jay Sussman, "The Revised Report on SCHEME, a Dialect
of LISP", MIT Anificial Intelligence Lab Memo 452, J anuary 1978

I} S. Skedzieleski and J. Glavert, "IF1 - An Intermediate Form for Applicative Languages”,
Lawrence Livermore National Laboratories, July 1985

J) Arvind, R.S. Nikhil and K.X. Pingali, "I-Structures : Data Structures for Paraliel Computing”,
Computation Structures Group Memo 269, MIT, Laboratory for Computer Science, Feb 1987

K).A.V.Aho, R. Sethi and J.D.Ullman, "Computers - Principles, Techniques and Tools", Addison
Wesley, 1986 :

IDA : A Dataflow Programming Language.

Appendix A - IDA Syntax

Block

declarations

Declarations

uple
expression

\\

constant
declarations

type
declarations

variable
declarations

N

function
declarations

Assignment

/S

variable

parameter
list

tuple
expression

49

IDA : A Dataflow Programming Language.

Appendix A - IDA Syntax continued

Constant Declarations

constant

constant

identifier

Q,

axpression

Type Declarations

type type
identifier ' body

Variable Declarations

variable
identitier

-

type

()
body \\/

A

Frocedure Declarations

procedure narametsr
| identifier fist
ype
identifier RETURNS

tuple

expression

—(

IDA : A Dataflow Programming Language.

Appendix A - IDA Syntax continued

Parameter List

< parameter

L

list part

)

Parameter List Part

parametear
list part

AW

variable
identitier

Type Body

type

AN function /

type
identifier

)
/

identitier

type

type

type

type

type

type

e |
N | e |
e
N Ay

AN stream /

IDA : A Dataflow Programming Language.

Appendix A - IDA Syntax continued

Subrange Type

constant
N simple
axprassion

Tuple Type

Union Type

: UNION

Stream Type

-1 STREAM

Frocedure Type

constant
simple
expression

field list

field list

type
bady

——@——»
-

—-—-{PROCEDURE]—

type list

{RETURNS }—

type I

identifier

IDA : A Datafiow Programming Language.

Appendix A - IDA Syntax continued

Array Type

ARRAY

()
/

subrange
type

33

‘liiil'

type
body

Field List
type
body
Type List
type list
) \
-
type list
part
Type List Part
type

identifiar

IDA 1 A Dataflow Programming Language.

Appendix A - IDA Syntax continued

Tuple Expressicn

exprassion

Expression

simple
gxpression

simple
gxpression

Simple Expression

/, erm

Term

factor el

IDA : A Dataflow Programming Language.

Appendix A - IDA Syntax continued

Factor

constant

\ literal
\—— identifier j

tuple
gxpression

(=)

expression

o
\ | NOT ’ factor | /

\ function . j

simple simple
expression axpression

tuple >
expression)

IDA ;. A Dataflow Programming Language.

Appendix A - IDA Syntax continued

Function
if
\\ function / >
N for /
function
. : while /
function
\ let /
+ function
If Function
(] boolean .) tuple
axpression THEN expression :
fuple
ELSE axpression
Loop Body
. tuple
assignment RETURNS gxpression

IDA : A Dataflow Programming Language.

Appendix A - IDA Syntax continued
boolean ' ' loop

expression body —

identifier

While Function

For Function

(+o.)

gxpression

simple

\

4 /

[

simple

gxpression
simple
BY axpression

Let/'Sequence Function

—{LET/SEQUENCE)—T— daeclarations

\

ASSIGN

assignment

()
_/

ioop
body

uple
expression

IDA : A Dataflow Programming Language.

Appendix A - IDA Syntax continued

Variable

N

variable
identifier ~

Constant Literal

‘ variable
: NEW/NEXT identifier
tuple
axprassion
unsigned
g -

\ number (/
\\—»—-—_—-—- string -mv-—-—-"/

String

character

IDA : A Dataflow Programming Language.

Appendix A - IDA Syntax continued

Unsigned Number
unsigned
' infeger
unsigned
integer
E J \ unsigned
integer

Unsigned Integer

Identifier < >

Moy WO
(0 —

IDA : A Dataflow Programming Language.

Appendix B - IDA EBNF

<block>
<deciaration>

<constant declaration>
<constant binding>
<type declaration>
<type binding>
<variable declaration >
<variable binding>
<procedure declaration>

<parameter [ist>

<parameter list part>
<parameter binding>
<type body>

<subrange type>
<tuple type>
<union type>
<stream type>
<procedure type>
<array type>

<field list>
<type list>

<type list part>
<tuple expression>
<expression>

<comparitor>
<simple expression>
<simple exp op>
<term:>

<term op>

<factor>

]

W

WO

W

en na s

<

<declaration> <tuple expression> ;'
<empty> |

<constant declaration> |

<type declaration> |

<variable declaration> |

<procedure declaration>

const <constant binding> { ;' <constant binding> } '}’

<identifier> '=' <expression>

type <type binding> { ;' <type binding> } "'
<type identifier> '=' <type body>

var <variable binding> { ;' <variable binding> } '}’
<identifier> { ' <identifier> } "' <type body>

def <identifier> <parameter list>

{ returns <type identifier>] '=' <tuple expression> ;'
<empty>!

<parameter list part> |

' <parameter list part> ")’

<parameter binding> { '}’ <parameter binding> }
<identifier> ["' <type identifier>]

<type identifier> |

<subrange type:> |

<tuple type> |

<union type> |

<array type>|

<stream type> |

<procedure type>

constant simple expression> '.." <constant simple expression>

|

WOWOW W

(]

Tl

W oW oW

tuple '(' <field list>)’

union '(* <field list> ")’

stream of <type body>

procedure <type list> returns <type identifier>

array [‘(" <subrange type> [' <subrange type> } V']

of <type body>

<type body> { '} <type body> }
<gmpty> |

<type list part> |

(" <type list part> 1)

<type identifier> { ' <type identifier> }
<expression> { ', <expression> }
<simple expression>

{ <comparitor> <simple expression>)
S e =] e

[<.;;ign>} <term> { <simple exp op> <term> }
'+ or

<factor> { <term op> <factor> }

1 Umoed' | and

<constant literal> |

<ident exp> |

not <factor> |

<function> |

array '(' <array dimension> { ', <array dimension> })'|-

(' <tuple expression> ")’

IDA : A Dataflow Programming Language.

Appendix B -

<ident exp>

<array index>
<array dimension>
<function>

<while function>
- <for function>

<direction>
<loop body>

<if function>

<let/sequence function>
<Start>
<let assignment>

<assignment part>
<assignment>
<variable>

<variable part>
<var qualifier>

<constant literal>
<unsigned number>

<exponent>

<sign>

<unsigned integer>
<string>
<identifier>
<digit>

<letter>

H

i

1

H

.4

i

T TN

i

IDA EBNF continued

<identifier>

{ <array index> { <array index> } |

<tuple expression> { <tuple expression> } }
' <taple expression> 7’
<simple expression> ..’
<if function> |

<for function> |

<while function> |

<let function>

while <boolean expression> do <loop body>
for «identifier>

from <simpie expression>

<direction> <simple expression>

[by <stmple expression>]

do <loop body>

to | downto

<assignment> { '}’ <assignment> }

returns <tuple expression>

if <boolean expression> then <tuple expression>
else <tuple expression>

<start> <let assignment> in <tuple expression>
let { sequence

<assignment part> |

<declaration> [assign <assignment part>]
<assignment> { ;' <assignrnent> }

[<varible> <parameter>} = <tuple expression>
new <identifier> |

next <identifier>l

<variable part>

<identifier> <var qualifier> { '’ <variable part> }
<empty> |

1" <tuple expression> '}’

<unsigned number> |

<string> |

nil | true | false

<unsigned integer> <exponent> .

<simple expression>

<un31gned 1nteger> ' <unsigned integer> <exponent> |

. <unsigned integer> <exponent>
<empty>]
E' <sign> <unsigned integer>
<empty>| '+ "
<digit> { <digit> }
" <character> { <character> } "
<letter> { '_'i <letter> | '~' | <digit> | '?" }
03152l314l516i7’8l9
!al 'ZT E IA w.?Z

61

IDA : A Dataflow Programming Language.

Appendix C - IDA Example Programs

const
n o= 10;
type -
matrix = array(l..n,1..n) of number;

def mm a:matrizx bimatrix returns matrix =
let

Var

¢ : matrix:;

i, 3, k, sum : number;
assign

= for 1 from 1 te n do
= for 3 from 1 to n do

cli,q41 = let

sum = 0
in
for k¥ from 1 to n do
next sum = sum + ali,k]
returns sum
returns ()
returns ()
in
c;

Example D.1 - Matrix Muitiply

* bk, 3]

62

IDA : A Dataflow Programming Language.

Appendix C - IDA Example Programs-

% definitions used in this ‘wavefront.ida'

const
high = 10;
Type
sea = array{l..high,1..high) of number

def wave returns sea =

let
var
ocean : sea;
i, 3 : number;

def min a:number b:inumber returns number =
1f a<kb then a else b:

assign
= for 1 from 1 £o high do
ocean(i,l] = 1
returns {};
= for 3 from 2 to high de
ocean([i,j] = 7

returns () ;

= for 1 from 2 to high do
= for 3 from 2 to high do

ocean{i,j] = min ocean{i-1,k}] ocean[i, j-1]

returns ()

returns {)

in
ocean;

% query of 'wavefront.ida’
wave;

Example D.2 - wavefront.ida

63

DA A Dataflow Programming Language. 64
Appendix D - IDA 'man’ page

DAL USER COMMANDS DA(l)

NAME
ida —~ RMIT Id Nouveau compiler

SYNOPSIS h
ida [d]{~-f][{~f13[270110 =p][=w]{~dryrun]! ~ipathname | { =Dname | [~Uname |
[-T][-R] filename

DESCRIPTION
ida will compile 1dA source files into an intermediate form called 7. The resulung file {filename Jf1) is
in a form accepmble to the RMIT [F1 wansiator which produces an 2 source file. The i2 file is passad
through the I2 assembier w create the dfo object file for exscution on the RMIT dataflow maching,
simulator and interpreter. ‘

COPTIONS .
~d Enable code-generation debugging.
=f Generate i2 code (as opposed 1o 7 code).
~if] Force an 7 file 10 be produced (as opposed to a dfo file).
il Force an (2 file (o be produced (as opposed to a dfo file).
] Enable full listing o tty of source code.
3, Enabile parser debugging.
~W Disable warning diagnostics.
=dryrun Show but do not execute the commands constructed by the compiler driver.

The following options are passed on 1o the preprocessor {cop(1))..

~Ipathname Lock in pathname for #include files,

~Dname Defines a preprocessor name.

~Uname Undefines a preprocessor name.

=T Use only the first eight characters for #define names.

-R Allow recursive preprocessor macros.
FILES

Jfileida IdA source file

Siledfl object file
SEE ALSO _

dis(1), sdfs(l), wdfs(1), i2(1), if1(1), sisal{1}.

DA A Dataflow Programming Larguage (TR-112-075R)
BUGS

U'm not silly enough to leave my contact address. I'm busy enough as it is!!

Yersion 1.0 Last change: 3 November 1988 ot

