JOINT ROYAL MELBOURNE INSTITUTE OF TECHNOLOGY AND
COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
PARALLEL SYSTEMS ARCHITECTURE PROJECT

Parallel Manipulation of Arrays
in
. SISAL

TR 112078 R

D. Abramson T
J-L. Gaudiot §
W. Heath t

+ Division of Information Technology
C.SIR.O.
c/o Department of Communication and Electronic Engineering
Royal Melbourne Institute of Technology
. P.O. Box 2476V :
Melbourne 3001
Australia,

§ Department of Electrical Engineering-Systems,
University of Southern California,
Los Angeles, California, U.S.A

Draft 1.0 November 1988

ABSTRACT:

SISAL is an applicative, single assignment language designed for parallel computing. It
allows easy side-effect free expression of parallel algorithms without the need to consider
parallel programming issues such as synchronisation. A major efficiency problem with
many applicative languages is that they require much more data copying than imperative
languages. Much work has already been performed on reducing the amount of copying
performed by the SISAL runtime system. However, in many cases these optimisations
severely reduce the available concurrency. This paper examines some examples in which
many arrays are constructed in parailel and must be combined into one result, which would
normally involve a large amount of copying in SISAL. We propose a new reduction
operator called merge, which both simplifies the solutions and also can substantially reduce
the amount of copying. An implementation technique is described which allows merge to
operate efficiently,

Paralle] Manipulation of Arrays in SISAL Page 1 ‘

1. INTRODUCTION

SISAL is an applicative language based on VAL [1] which has been designed by a
consortium of industrial and research organisations [2] for the specification and execution of
parallel programs. It differs from conventional imperative languages by

- providing a safe execution model free of synchronisation constraints
- using a single assignment rule

- not allowing global variables

- providing a powerful parallel loop construct

SISAL can be compiled for a number of different machines and architectures. Code can be
generated for shared memory machines like the Sequent Balance [3], Encore Multimax [3] and
Cray X-MP; message passing machines like the Inmos Transputer [4], and dataflow machines
like the Manchester machine {5} and the RMIT/CSIRO dataflow machine [6].

The most mature code generator is the shared memory version, developed by Colorado State
University (CSU) in collaboration with Lawrence Livermore National Laboratory [3]. This
runtime system includes a reference counting scheme to assist in detecting when structures are
no longer being accessed, but more interestingly, to determine when it is possible to perform
update in place rather than data copying.

A problem experienced with SISAL is that it is not possible to specify parallel updates on
large structures. Further, the optimisations used in the CSU run time system allow efficient
update-in-place for serially executed loops, but cannot assist with parallel loops. This paper
addresses both of these issues. First, we suggest a new reduction operator for SISAL, which
allows concise specification of parallel updates on large structures, without loss of functional
semantics. Second, we suggest an efficient implementation for use in the run time system. The
technique is demonstrated by a number of examples.

2. LOOPS, REDUCTION OPERATORS AND ARRAYS

SISAL provides two different loop constructs, one for serial while/repeat loops and the
other for parallel for loops. Serial loops can refer to values produced in previous iterations using
the prefix old before the variable. Thus, it is possible to carry information from one iteration to
another in serial loops. Because the language is applicative, every expression must return a
result. Loops may return a number of different types of result by using special loop reduction
operators. Current reduction operators allow the following results of a Ioop:

value return the last value computed by the loop expression

least return the minimum value computed by the loop expression across all iterations
greatest return the maximum value computed by the loop expression across all iterations
array coliect all loop results and place them in an array

catenate collect all loop results and catenate them into an array

sum add all the loop results into one result

The combination of loops and reduction operators provides an extremely powerful facility
for building and operating on arrays. To illustrate this power, the following serial and parallel
loops construct an array which contains the square of the index in each cell.

for index in 1,arraysize for initial
index = 1;
: while index <= arraysize repeat
cell :=index * index cell :=index * index;
index = old index + 1;
returns array of cell returns array of cell

end for end for

Parailel Manipulation of Arrays in SISAL Page 2

Parallel Loop Serial Loop

A special replacement operator is provided for producing a new array which is identical to an
old array except for one element which has been changed. For example, the following code
would create a new array A2, which was identical to A1 except that element j had been changed
to newval.

A2 = Al{j:newval};

The replace operator makes it possible to apply changes iteratively to a structure by using a serial
loop.

3. SOME INSTANCES OF ARRAY MANIPULATION IN SISAL

This section considers a number of different classes of problems, each of which requires
parallel access, and in some cases update, to some large structure. These problems are quite
difficult to solve using the existing SISAL constructs because they yield unwieldy code and
have inefficient implementations.

The first example illustrates problems of sparsely updating arrays in parallel. The second
example considers a divide and conquer algorithm which manipulates very large structures. The
third problem is one which is traditionally hard to solve in SISAL, for it involves several
processes collaborating in constructing a histogram (implemented as a shared structure). In the
last instance, synchronisation is implemented by sharing the access to the same global structure.

3.1 Sparse Updating of Arrays

Consider the following FORTRAN loop and its equivalent in SISAL, which sets the
elements of an array to zero given index values held in a second array: '

do 101 = 1,updatearraysize for initial i := 0;
while 1 <= updatearraysize repeat
mainarray(updatearray(i)) = 0 mainarray := old mainarray[updatearray[i]:0];
i=oldi+1;
10 continue returns value of mainarray
end for
FORTRAN SISAL

It may appear that the SISAL code would involve much more work than the FORTRAN
because each loop iteration requires a complete copy of the mainarray structure; logically there
are as many mainarrays created as iterations of the loop. However, the SISAL compiler and
runtime system plants reference counting code to determine whether the update cannot be made
in place, or whether the creation of the new array simply involves a pointer reassignment. In the
example, it is clear that no other code requires the old mainarray structare, thus the updates can
be performed on the original array. This scheme is implemented in the CSU SISAL runtime
system. ‘

A problem with SISAL is that there is no way to specify that the above updates could be
performed in parallel, even though each loop iteration is independent of the other. In fact, in this
example, it is not important whether the updatearray contains any duplicates becanse they all
assign the same value.

Parallel Manipulation of Arrays in SISAL Page 3

3.2 Divide and Conquer on Large Structures

A more complex example is that of a parallel circuit board router algorithm [7]. This
algorithm places the tracks which connect the points of a printed circuit board by dividing the
board into four routing areas recursively. Prior to each subdivision the wires are split into 5
lists; one list for the wires which are completely contained in each of the four quadrants, plus
one list of wires which do not have both endpoints in any of the new quadrants. The routine
route returns with either no wires left in the wire list, or a number that could not be routed in the
given area. These 4 lists are then merged together again, and the remaining wires routed. Any
wires that can not be routed are returned to the calling instance of route.

wiresleft

SF TN
L7 7

N7
1w[3] 1wl1] board
twi4] 1w[2)

// '/ // \' // /

/ / e

board

procedure route (input board, wiresleft, bounds:;
output board, wiresleft)

begin
if keepsplitting(...) then
begin
newbounds := computemidpoints(bounds)
splitwires(newwires, wiresleft);
for cornerin 1.4 do
fork(route(board, newwires [corner], newbounds[corner]));
mergewires(wiresleft,Iw);
end;
process{board,wiresleft, bounds);
end;

It is possible to spawn the four calls to route as parallel procedure calls because each
operates-in a different area of the board and with different wire lists. The structure Board holds
the state of each grid position on the board. Even for modest sized boards it is quite large. [tis
possible to simply pass a pointer to the main board structure to the four calls, and no data is
copied between calls,

However, it is difficult to specify an equally efficient program in SISAL. The algorithm
remains basically the same. However, route must return the appropriate section of the board as a

Parallel Manipulation of Arrays in SISAL Page 4

new sub array, which can then be recombined later to form a composite board.

function route { board: Grid;
wiresleft : Wirelist;
bounds :corners;
returns Grid, Wirelist)

if keepsplitting(...) then
let
newbounds := computecorners(bounds);
newwires:= splitwires(wiresleft);
newboard, wiresnotdone :=
for corner in 1,4
newboard,wires:= route(board,newwires[corner],newbounds[corner 1);

returns array of newboard, value of catenate wires
end for

currentwiresleft := wiresleft || wiresnotdone;
currentboard := mergeboard(newboard);
in
processboard(currentboard,currentwiresleft, bounds)
end let

else
processboard(board, wiresleft, bounds)

end if

end function;

It is clear from these two code fragments, that the SISAL version must involve much more
computation, and even worse, use much more space. It is not possible specify that the board structure
can be safely shared between calls to the function route because the algorithm keeps each instance
separate.

3.3 The Histogram Problem

Often one wishes perform some operations in parallel, each of which yields a frequency, and then
to add frequencies into a histogram in parallel. Below is a serial FORTRAN program which shows
the type of operation. The function, compure, forms a histogram address in the array histogram. The
cell is then incremented. The equivalent serial SISAL code is shown on the right,

do 101 = 1,samplesize for initial i :=0;

compute(histaddr) while 1 <= samplesize repeat
‘ histaddr := compute(...);

histogram(histaddr) = newval := old histogram [histaddr] + 1];
histogram (histaddr)+1 histogram := old histogram [histaddrinewval];

- ' itr=oldi+1;
10 continue returns value of histogram
end for

FORTRAN SISAL

Paraliel Manipulation of Arrays in SISAL Page 5 ’

A parallel solution is shown below. It involves splitting the computation across the
processors, each producing a histogram corresponding to its portion of the input space. The
partial histograms are them summed in parallel to form the global histogram. A drawback of the
solution is that many partial histograms must be formed before they are added together, rather
than one structure being updated as the computations are performed.

It should be noted that there has been an important departure from "accepted" functional
programming language philosophy: while the programmer is usually to be concerned with the
structure of the problem rather than the structure of the machine, it has been recognized here that
spawning of processes would only occur efficiently if the number of processors available for the
computation was explicitly specified.

function hist (localsamplesize : integer ; s: OneDim ; returns OneDim)

for initial
slot:=s;
1:=0

while i < localsamplesize
repeat
ii=oldi+1 ;
histaddr = compute(...);
slot := old slot [histaddr : old slot[histaddr] + 1]
returns value of slot

end for

end function % hist

function mergehist (samplesize,numprocessors : integer ; slot : OneDim ;
returns OneDim)

let
newslot := for j in 1,numprocessors
returns array of hist (samplesize / numprocessors, slot)
end for;
in
foriin O,array_size(slots)-1
sumofelements :=
for j in 1,numprocessors
returns value of sum newslot[j,i]
end for
returns array of sumofelements
end for
end let
end function % mergehist

3.4 The Arbitration Problem

The arbitration problem occurs in computations which are spread across several processors,
but require mutual exclusion and synchronisation when accessing some shared resources. This
problem can be encountered in parallel Monte-Carlo algorithms such as simulated annealing
problems [8]. Each of the processors chooses a number of shared resources from a pool, and
then must prevent any other processor from gaining access to the same resources. Traditionally,
this problem can be solved with semaphores or indivisible locks. These constructs are not
functional and are not available in SISAL.

Parallel Manipulation of Arrays in SISAL Page 6

This problem has many similarities with the histogramming problem described in the last
section. A solution can be found by allowing each processor to choose in parallel the resources
it requires, and then forcing them to vie for the resources before proceeding. Arbitration can
then be implemented by representing the requests of each processor in a structure, and then
applying an arbitration process to these structures. The results of the arbitration process can then
be read by each processor to determine which requests were successful. This scheme is shown
below. A list of required resources is constructed by each worker in parallel. A conflict vector is
created with one entry per resource, and is initialised with large values. The conflict vector is
then processed for each worker, and the worker number is stored in the appropriate entry if it is
less than the current value. At the end of the arbitration process, each worker can examine the
contlict vector to determine whether it has been successful. A major problem with this approach
is that the arbitration process must be sequential in order to be efficient because, typically, the
number of resources is much larger than the number of workers. The effect of a slow serial
arbitration is that the performance is lowered in accordance with Amdahl's law.

% contlict_vector is initialised to a large value
let

resource_list :=
for w in 1,numworkers
resource = choose(w);
returns array of resource

end for; %build list of chosen resources, one for each worker -
in

for initial
w=0;
while w < numworkers repeat

% process resources, giving priority to low numbered workers

wi=oldw+ 1;
conflict_vector := if old conflict_vector{resource listfw]] > w then
old conflict vector[resource list{w]:w] else
old conflict_vector
end if
returns value of conflict_vector
end for
end let

% Now proceed to check whether successful

4. A NEW REDUCTION OPERATOR

All of the problems raised in the previous section can be overcome by using a new reduction
operator which allows the programmer to specify that a number of structures are to be combined
to form one new structure. At the graph level, merge can be viewed as a node which accepts a
number of arrays and produces one new array.

Parallel Manipulation of Arrays in SISAL Page 7 "

Arrays to be merged

[/

Merge

'

Merged Array

By adding a number of modes to the operator, it is possible to provide a wide range of
functions.

4.1 Unique Merge

The basic operator, called merge, accepts a number of arrays, and merges them into a new
array. The cells of the new array can take on values in three cases.

1) If all of the corresponding elements of the arrays to be merged have the same value,
then the element of the reduced array is the same as the corresponding elements in the
original arrays.

2) If one element differs from all other corresponding elements in the arrays to be merged
then the differing value is placed in the reduced array

3) If more than one element differs from corresponding elements in the merged arrays,
then the corresponding cell in the reduced array is set to error value.

The following examples illustrate the above definitions.

Elements Merged) Result
7 7 7 7 7 7 7 7 7 7
10108 8 7 7 7 7 7 Error
w7 77 7 7T 7 7 7 10
0107 7 7 7 7 7T 7 Error
100 0

_ The unique merge can be used in the sparse updating of arrays problem, and also in the
circuit router. The resulting code is much simpler, and it is possible for the runtime system to
make some optimisations. The following code can replace that shown in 3.1 and 3.2.

fori in updatearraysize

reducedarray := mainarray{updatearray[i]:0];
returns value of merge reducedarray

end for

Parallel Manipulation of Arrays in SISAL Page 8§

function route (board: Grid;
wiresleft :Wirelist;
-bounds :corners;
returns Grid, Wirelist)

if (keepsplitting) then
Iet
newbounds := computecorners(bounds);
newwires:= splitwires(wiresleft);
currentboard, wiresnotdone =
for comerin 1,4
newboard,wires:= route(board,newwires[corner],newbounds| corner T);

returns value of merge newboard, value of catenate wires
end for

currentwiresleft := wiresleft | wiresnotdone;
in
processboard(currentboard,currentwiresleft, bounds)
end let '
else
processboard(board, wiresleft, bounds)
end if

end function;

4.2 Sum Merge

The unique merge operator can be usefully extended by the introduction of the sum merge. This
variant operates similarly to the unique merge, but corresponding elements in the input arrays are
added together to form a merged array. This is in contrast to the original merge, in which only one
element of the input arrays contributes to the final result. The sum merge provides an extremely
elegant solution to the histogram problem, as shown below. The programmer no longer needs to form
and surn many separate histograms, because the addition is performed by the reduction operator,

fori in samplesize

histaddr := compute(...);
newhistogram := histogram [histaddr:1];

returns value of sum merge newhistogram

end for

4.3 Least and Greatest Merge’

One further extension to the basic merge is the least/greatest merge. It differs from the
conventional merge in that the contributing element is the minimum/maximum of the
corresponding elements of the input arrays, rather than being the differing element. This form of
merge provides a sclution to the arbitration problem, in which the entire arbitration process can
be performed in parallel. The new code is shown below. It replaces the code in italics in 3.4.

Parallel Manipulation of Arrays in SISAL Page 9 ‘

% process resources, giving priority to low numbered workers
for w in 1,numworkers
newconflict vector := conflict_vector[resource_list[w]:w]

returns value of least merge newconflict_vector
end for

% Now proceed to check whether successful

5. AN IMPLEMENTATION TECHNIQUE

There are a number of different techniques for implementing the merge operators. This
section describes a simple method, and then proposes some optimisations which allow the
update o occur in place.

5.1 Simple Implementation - All arrays present

In the simplest implementation of merge, all of the arrays are produced in parallel, and are
then merged element by element to produce the new array. Since all of the input arrays are
available, the merge can simply sweep across the input elements. In the case of unique merge,
only one differering value is allowed. In sum merge, the corresponding elements are added
together. In the least/greatest merge the minimum/maximum value is chosen in each sweep. The
unique merge can be controlled by a finite state machine, as shown below.

The name of each state indicates the output value of the merge for any particular element of
the output array. The values A and B indicate different input values. The value x indicates any
value.

5.2 Simple Implementation - one array at a time

In many cases not all of the arrays will be available at the same time, and therefore cannot be
reduced simultaneously. It is still possible to implement an incremental merge, however, extra
data must be stored along with the reduced array. It is necessary to store the the values of A
andB for all elements or the output array, as well as the state of each finite state machine,

In the case of sum, least and greatest merge, it is not necessary to retain any state
information because the incoming value can simply be added, or compared, to the current output
value. _

5.3 Update in Place

One of the most attractive features of the merge operator is that it is possible to recognise that
a number of structures are being merged into one new structure. Under certain circumstances it
is possible to perform the merge in place, rather than by constructing a number of temporary
arrays and then merging them. Update in place is clearly more efficient because it removes the
need to construct the temporary arrays, and also removes the merge as a separate operation. An
update in place can occur when

Parallel Manipulation of Arrays in SISAL Page 10

1) No consumers of the array are active at the time of the merge '

2) The resultant array is produced by a number of independent iterations _ ' .

3) Each of the contributing iterations is using the array-replace operator in forming their
sub-array

Under these conditions each loop iteration is producing new arrays which differ from the
same input array, If no other computation requires the input array, then this input array can be
directly modified by the merge, without the need to construct new structures. The reference
counting scheme used in the CSU runtime system can be used to test condition 1. Conditions 2
and 3 can be detected by some relatively simple graph analysis.

The semantics of the merge operator arbitrate producer-producer conflicts and clearly define
the outputs to be obtained in those conditions. Thus is it possible to have many independent
loop iterations contribute to one merged array without the need for separate temporary arrays. In
this section we describe two different methods for implementing the producer-producer conflict
resolution when the update is performed in place. Consumer-producer conflicts, which occur
when a loop instance both consumes a structure and produces a new structure, will be dealt with
in section 5.4. The sum, greatest and least merge operators do not require any
producer-producer conflict resolution.

5.3.1 State Vectors

The simplest technique for detecting multiple producers is to attach a state bit to each element
of the array. Initially all of the state bits are cleared, and as each element of the array is filled, the
corresponding state bit is set. If any producer attempts to fill a cell which is already full, then an
error value may be placed in the cell.

5.3.2 One Time Identifiers

A problem with using state vectors on very large arrays is that the state vector must be
cleared before each parallel loop which merges a result into the array. This clear operation may
take a long time. The solution consists of expanding the single bit state vector values to many
bits per element. For example, each cell may be associated with an 8 bit state value. Each array
has an additional state value called a one-time-identifier [9], which is initially set to zero.
Similarly, the state values associated with the elements are also set to zero. Each time a parallel
loop which merges into the array is started, the one-tinie-identifier is incremented. When'a data
item is stored in an element the state value is examined. If the state value is equal to the
one-time-identifier then the error value is substituted for the original data. If they differ then the
data is stored in the element, and the corresponding state value is set to the one-rime-identifier
value.

This technique has the advantage that if only a small section of the result array is modified
by any loop, then the entire state vector need not be cleared. Only those cells which are active
have their state values manipulated.

5.4 Producer-consumer conflict

In section 5.3 the conditions which allow update-in-place to occur are outlined. The first
condition is that no other consumers of the array are active at the time of the merge. In almost all
of the examples of the use of merge given in section 4 the merging loops did not yield any
producer-consumer conflicts. Conflicts were not present because. each loop only used an
array-replace operation, and did not examine the contents of the array. However, the code for
the circuit router presented in section 4.1 did contain a producer-consumer conflict. Thus, the
board structure could not be updated unless the code which examined it was separated from the
code which produced a new board.

The solution to the problem involves separating the code which examines the structure, and
have it return a list of changes to the board structure. A separate for-all loop could then take the

Parallel Manipulation of Arrays in SISAL Page 1 1

changes and apply them.

The producer-consumer problem described is not peculiar to the merge operation, but occurs
in any array manipulation which both examines and produces a structure concurrently.

6. CONCLUSION

In this paper, we have described a new reduction operator for SISAL, which will enable the
programmer to specify complex array interaction operations. In addition, we have demonstrated
implementation schemes for both the simple semantics of the operator as well as more advanced
semantics. We have shown how update-in-place can be used for efficient implementation of
some array merge operations. Our reduction operator is not specific to any class of
multiprocessor but can instead be used on shared memory machines as well as message passing
systems. A prototype version of the merge operator has been included in our local version of the
LLNL SISAL compiler and of the CSU runtime system.

Further research issues will include the implementation by parallel merge reduction trees.
Alternatively, unconventional communication networks such as the NYU Ultracomputer
"Fetch-And-Add" network could be used efficiently by merge add, for example.

Acknowledgements

The authors wish to acknowledge the support of the project team, in particular Dr G. Egan,
P. Chang, M. Rawling, S. Wail, N Webb, P, Whiting and A. Young. The Parallel Systems
Architecture Project at RMIT is being jointly supported by RMIT and the Commonwealth
Scientific and Industrial Scientific Organisation (CSIRO) under an Information Technology joint
research project. This material is also based upon work supported in part by the US Department
of Energy, Department of Energy Research, under Grant No DE-FG03-87-ER25043.

References

[1] J.R. McGraw. "Data-flow computing: the val language”. ACM Transactions on
Programming Languages and systems, 4(1), Jan. 1982.

[2] J.R. McGraw, S. Skedzielewski, S. Allan, D. Grit, R. Oldehoeft, J.R.W Glauert, 1.
Dobes, and P. Hohensee, "SISAL-Streams and Iterations in a Single Assignement
Language”, Language Reference Manual, Version 1.2. Technical Report TR M-146,
University of California - Lawrence Livermore Laboratory, March 1985.

[31 R. R. Oldehoef and D. C. Cann. "Applicative parallelism on a shared-memory
multiprocessor”. IEEE Software, January 1988.

4] J.-L. Gaudiot and L.T. Lee. "Occamflow: a methodology for programming
multiprocessor systems”. Journal of Parallel and Distributed Computing, In Press 1989.

[5] LR. Gurd, C.C. Kirkham, and I, Watson. "The Manchester data-flow prototype”.
Communications of the ACM, 28(1), January 1985.

[6] D. Abramson and G.K. Egan, "An Overview of the CSIRO/RMIT Parallel Systems
Architecture Project”, Australian Computer Journal, Vol 20, No 3, August 1988.

[7] D. Abramson and J. Freidin, "A Parallel Router for Printed Circuit Boards", Department
of Communication and Electrical Engineering RMIT Technical Report, in preparation,

[8] D. Abramson. "Constructing School Timetables using Simulated Annealing: Sequential
and Parallel Algorithms", Department of Communication and Electrical Engineering
RMIT Technical Report TR112 069R.

Parallel Manipulation of Arrays in SISAL Page 12

(91 A.J. Smith, "Cache Consistency Support using One-time Identifiers”, Proc. Pacific
Comp. Comm. Symp, Oct 1985,

