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ABSTRACT:

This paper describes two computationally expensive programs, and discusses the
techniques used for producing parallel versions of the code. The first program uses
simulated annealing for constructing school timetables. The second application is a
printed circuit router program. A number of test runs on an Encore MULTIMAX are
presented.The paper contrasts two different partitioning strategies, and illustrates
their strengths and weaknesses. It comments on the use of message passing and
dataflow machines as alternatives for the shared memory machine used in the
experiments.
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1. INTRODUCTION

This paper contains case studies of two computationally expensive programs, and
discusses the techniques used for producing parallel versions of the code. The first program
uses simulated annealing for constructing school timetables. Simulated annealing is a
combinatorial optimisation technique based on statistical mechanics. It is used for finding
minimal cost solutions to problems which are too large for exhaustive search techniques. It
models a set of cooling atoms which are governed by inter-particle forces. The atoms are
cooled slowly in order to produce a configuration with a very low system energy. The problem
with slow cooling is that it requires a large amount of processor time. An extremely elegant
technique for improving the execution speed is to use parallel processors. It is possible to
divide the atoms into partitions and then cool them separately. Synchronisation is required only
when atoms interact with others in different partitions. This type of parallelisation can show
good speedup, and can reduce many hours of processor time to minutes of elapsed time. The
paper will present some results gathered on an Encore MULTIMAX shared memory machine.

The second application is a printed circuit router program. Computing the paths of the
tracks in printed circuit boards is an extremely expensive process. It involves finding a path for
each wire which does not cross any previously created tracks. The paths are found using a
maze router algorithm, which advances a wavefront into unfilled cells. A paraliel
decomposition of the problem consists of routing more than one wire at a time. Because of the
relationships between tracks, it is initially difficult to see & good parallel algorithm. However,
wires tend to be clumped together thus exhibiting a large degree of locality. Our parallel
algorithm involves using a divide and conquer technique for partitioning the circuit board. A
recursive program divides the board into two partitions, and passes the relevant wires to each
partition. Wires which are not totally contained in the two sub partitions are held until the sub
partitions have been routed. The recursion continues until either a fixed maximum depth is
reached, or there are no wires left. Routing is then performed on the way back up the recursive
tree. The scheme cannot show the same linear speedup found in the simulated annealing code,
but does benefit from a small number of processors. Again, a number of test runs on an Encore
MULTIMAX are presented.

The paper contrasts two different partitioning strategies, and illustrates their strengths
and weaknesses. The programming paradyme that has been used in the shared memory model,
in which many processes share access to structures in one global memory pool. The paper
comments on the use of message passing and dataflow machines as alternatives for the shared
memory model.More details on both of these applications can be found in other papers [1] [2].

2. TIMETABLE PROBLEM and SIMULATED ANNEALING.

The problem of creating a valid timetable involves scheduling classes, teachers and
rooms in such a way that no teacher, class or room is used more than once per period. For
example, if a class must meet twice a week, then it must be placed in two different periods to
avoid a clash. The timetable is to be distributed across a fixed number of periods per week. A
class consists of a number of students. We will assume that students have already been
grouped into classes. In each period a class is taught a subject. It is possible for a subject to
appear more than once in a period. A particular combination of a teacher, a subject, a room and
a class is called an element. An element may be required more than once per week. The
combination of an element and a frequency is called a requirement. Thus, the timetabling
problem can be phrased as scheduling a number of requirements such that a requirement,
teacher, class or room does not appear more than once per period.

Tt is possible to define an objective or cost function for evaluating a given timetable. This
function calculates the number of clashes in any given timetable. An acceptable timetable has a
cost of 0. The cost of any period is of the sum of three components: a class cost, a teacher cost
and a room cost.
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The class cost is the number of times each of the classes in the period appears in that
period, less one if it is greater than zero. Thus, if a class appears no times or once in a period
then the cost of that class is zero. If it appears many times the the class cost for that class is the
number of times less one. The class cost for a period is the sum of all class costs. The same
computation applies for teachers and rooms. The cost of the total timetable is the sum of the
period costs.

3. SIMULATED ANNEALING

Simulated annealing (SA) is a Monte-Carlo technique which can be used to find
solutions to optimisation problems. A good review of the theory and practice can be found in
[3]. The technique simulates the cooling of a collection of hot vibrating atoms. When the atoms
are at a high temperature they are free to move around, and tend to move with random
displacements. However, as the mass cools the inter-particle bonds force the atoms together.
When the mass is cool, no movement is possible, and the configuration is frozen. If the mass
is cooled quickly then the final system energy may not be minimal. However, if it is cooled
slowly, then the final energy may be the lowest possible. At any given temperature a new
configuration of atoms is accepted if the system energy is lowered. However, if the energy is
higher, then the configuration is accepted only if the probability of such an increase is lower

than that expected at the given temperature. This probability is given by P(AE) = e-AE/KT,
where K is Boltzmann's constant.

By modelling optimisation problems as a set of randomly vibrating atoms, it is possible
to find optimal, or sub-optimal, solutions. Many optimisation problems can be considered as a
number of objects which need to be scheduled such that an objective function is minimised.
The vibrating atoms are replaced by the objects, and the value of the objective function replaces
the system energy. An initial schedule is created by randomly scheduling the objects, and an
initial cost (cg) and temperature (T() are computed. Subsequent permutations are created by
randomly choosing two objects, interchanging them, and computing a change in cost (Ac). If
Ac <0 then the change is accepted. However, if Ac > 0 then the probability of that change is
calculated,

P(Ac) = ¢ -A¢/T,

If the pfobabﬂity is greater than a randomly selected value in the range (0,1) then the
change is accepted. After a number of successful permutations the temperature is decreased by
a cooling rate, R, such that Ty = T;.1 * R.

One of the advantages of simulated annealing over algorithms which always seek a better
sotution (hill climbing algorithms) is that simulated annealing is less likely to get caught in local
minima, because the cost can increase as well as decrease.

4. APPLYING SA TO THE TIMETABLING PROBLEM

The application of simulated annealing to the timetabling problem is relatively straight
forward. The atoms are replaced by elements. The system energy is replaced by the timetable
cost. An initial allocation is made in which elements are placed in a randomly chosen period.
The initial cost and an initial temperature are computed. The cost is used to reflect the quality of
the timetable, just as the system energy reflects the quality of a substance bein g annealed. The
temperature is used to control the probability of an increase in cost and relates to the
temperature of a physical substance. At each iteration a period is chosen at random, called the
from period, and an element randomly selected from that period. Another period is chosen at
random, called the to period. The change in cost is calculated from two components:

1) The cost of removing the element from the from period
2) The cost of inserting the element in the to period.



Case Studies in Parallel Programming Page 3

The change in cost is the difference of these two components. The element is moved if
the change in cost is accepted, either because it lowers the system cost, or the increase is
allowed at the current temperature. Unlike the classic simulated annealing technique which
would actually swap two elements, an element is removed from one period and placed into
another. This allows the number of elements in one period to increase or decrease, and for all
periods to a contain different numbers of elements. If two elements were swapped then it
would not be possible to change the number of elements per period.

The cost of removing an element consists of a class cost, a teacher cost and a room cost.
Likewise, the cost of inserting an element consists of a class cost, a teacher cost and a room
cost. If after removing an element from a period the number of occurrences of that class is > 0,
then the class cost saving is 1. Similarly, if there are one or more occurrences of the teacher
after that teacher has been removed then the teacher saving is 1. This technique also applies for
rooms. The cost of inserting an element can be calculated using the same basic technique. In
this way it is possible to determine the change in cost incrementally without recalculating the
cost of the entire timetable. This attribute is particularly useful when the paralle! version of the
algorithm is implemented. '

5. A PARALLEL ALGORITHM

Simulated annealing, while very effective at solving the timetabling problem, can be
extremely slow (for example, a data set for a real school took 14 hours of processor time on a
SUN 3/60). The elapsed time taken to run the simulated annealing algorithm described can be
improved by using a parallel algorithm rather than a serial one. In the serial algorithm, each
permutation of the elements is performed sequentially, and the new configuration either
accepted or rejected. A new configuration is not generated until the previous one is performed.
However, it is possible to perform multiple permutations concurrently, providing each
permutation is independent of the other permutations.

A parallel algorithm can be implemented by assigning multiple processes to the task of
permuating the timetable. The timetable must be held in a shared memory area accessible to all
processes. Each process independently chooses an element to move (from a from period), and
a to period. In order to prevent other processes from choosing the same element and to period,
they must lock the element. It is not actually desirable to lock the entire to period, as this would
severely limit the number of concurrent swaps which were possible. Instead, they only need
lock the reacher, class and room in the to period. Similarly, the teacher, class and room must
be locked in the from period. These items must be locked so that no other process can effect
the cost computation of a given process. The incremental cost computation technique allows a
process to calculate the change in cost without recomputing the cost of the entire timetable.
Once these items have been locked a process can determine the change in cost independently
from all other potential swaps. If a process chooses an element, teacher, class or room which is
already locked, then it must abandon the choice and try another.

The maximum number of concurrent processes depends on the size of the timetable. If
there are too many processes for a given number of elements, then the number of processes
abandoned swaps will be too high. Every time a choice is abandoned the effective speedup is
decreased.

The locks described above can be implemented by simple read-modify-write variables in
shared memory. A process can read a lock, and write a special marker value into the lock with
an indivisibie cycle. If the process reads the special lock value then it knows that the lock is
already current and can abandon the choice. Such read-modify-write variables are not
uncommon for multiprocessor machines. True semaphores are not required because the
process does not wish to suspend when a lock is already claimed. Deadlock is not possible
because a process backs-off any transaction which it cannot complete.

Implementing the parallel algorithm on a shared memory multiprocessor is relatively
simple. The timetable must be heid in shared memory, together with the lock variables. Once
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the timetable has been initialised the master process can fork and spawn as many child
processes as necessary. Hach child process permutes the timetable until the system is frozen, or
the timetable has been solved. Each process can maintain its own temperature, or access a
shared temperature variable. Similarly, each child process may share a common random
number generator or maintain its own. If they use separate random number generators then
each must use a different initial seed to avoid the same pseudo random sequences.

6. EXPERIMENTAL RESULTS FOR PARALLEL ALGORITHM.

The parallel algorithm described in the previous section has been implemented on a
conventional shared memory multiprocessor, 2 10 processor Encore MultiMax. Some test data
was presented to the parallel program, and the effective speedup was measured. The results
are shown in Table 1. The execution time is shown for the purely serial code on the Encore,
and then the parallel code using 1, 2, 4, 6 and 8 processors. It was not possible to use all 10
processors because of external demands on the machine. The Peak speedup is defined as the
time for the single process run divided by the smallest multiprocess time. The peak speedup for
the small problems is low because there are not sufficient resources to keep the processors
busy. In general, the larger the problem, the greater the speecdup. It can be seen from these
examples that whilst not ideal, the speedup in many cases is significant.

Test Number Serial Time in Secs for Number of Processors

Data  Elements Time 1 2 4 6 8 Speedup
i 100 43 41 20 16 i3 13 3.2
2 150 79 57 52 29 27 22 4.3
3 200 139 180 87 54 38 33 5.4
4 250 211 255 142 85 71 72 4.4
5 300 390 729 409 218 157 137 5.3
6 400 402 529 288 159 103 78 6.7
7 600 807 842 528 256 165 150 5.6
3 600 774 906 473 265 194 135 6.7
9 2252 5700 6900 3840 2100 1440 1020 6.8

Table 1 - Results of Parailel Execution

When evaluating a parallel algorithm, it'is important not just to consider speedup, but
also absolute speed. The efficiency of the paraliel algorithm can be expressed as the time taken
to solve the problem using the parallel code with one processor, divided by the time taken
using a serial version of the program with one processor. A number of experiments have
indicated that the paraliel code varies from equal, to at worst two times slower than the serial
version. Thus, in this worst case two processors are required before the parallel code
overcomes the cost of the locking and synchronisation code. The serial time is shown in Table
L. In most of these examples the parallel version was only slightly slower than the serial code.
Large timetable data sets could easily be expected to use up to 32 MIMD processors, providing
a significant speedup. Further, it is possible to omit much of the locking code, which would
reduce the cost of the parallel solution substantially by lowering the overheads. This technique
is currently being investigated.

7. ROUTING USING LEE'S ALGORITHM

Routing a printed circuit board involves finding paths for the wires that connect
integrated circuits. The wires are not allowed to cross on any given layer, however, more than
one layer may be used to connect all wires. There are many different routing algorithms, and a
good summary can be found in [4]. The oldest and most general technique uses a wavefront,
which is advanced from the source to the destination. First described by Lee in [5], this scheme
finds the shortest path between any two points, and is based on 2 fixed grid of cells. Cells
either contains a value indicating that the board position is either occupied by a hole, circuit
track, or part of an advancing wave. The cell corresponding to the source location is initialised
with a low score value, e.g. 1, and is then added to a current wave front list. Then all of the
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cells surrounding the current wave front are set to the score 2, and are added to the wave front
list. The initial cell is subsequently removed from the wave front list. This process continues
until the wave either meets the target destination, or entirely fills the board. If the destination is
not touched, then there is no path from the source to the destination. If the wave meets the
target, then a path is traced by tracing a path of decending cell value from the destination until
the source is reached. This basic technique is enhanced to cater for practical considerations in
the routing of printed circuit boards and integrated circuits.

8. A PARALLEL ROUTER

The basic parallel algorithm atternpts to detect wires that are unrelated and route them
concurrently. For example, wires that are at different ends of a board are likely to be
completely independent, and thus could be routed at the same time. These wires are grouped by
recursively dividing the board into regions, and passing the wires completely contained in a
region to the router separately. Wires which are contained in more than one region are held
until all those at lower levels have either been successfull routed, or could not be routed
because of congestion. This basic algorithm is illustrated in Figure 1.

Held at Level O

' pd

W= N4

Held at level 1 /

//\\ 4 é / / //

Figure 1 - example of recursive splitting

At each stage, the router calls irself, and splits the region it has been passed into two
sections. It created three wire lists; two for those wires completely contained in each region,
and one for those wires which cannot be partitioned. This process continues until either there
are no wires left to route, or some preset maximum depth has been reached. After the routine
has called itself recursively, it proceeds to route the wires it had held onto, and also attempts to
route those which could net be connected by the recursive call. Thus, each call to the route
accepts a wire list, and returns a wire list containing the wires it could not connect. :

This process continues until it returns to the root of the call tree. If all of the wires have
been connected then the router terminated, however, if there are wires left then it starts the
process over again with two new layers. It is worth noting that this recursive procedure
effectively sorts and routes the wires by length, because the shortest wires are passed down to
the lower call levels, and are thus routed first.
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In itself, this recursive algorithm is sequential. However, by replacing the recursive call
with a recursive paralle! procedure call, each section can be routed concurrently. There is no
need for any communication between the processes after the procedure call because they are all
operating in separate areas of the board. If the algorithm is being executed on a shared memory
multiprocessor, the board should be placed in shared memory to avoid copying it between
calls. The reference parameters used in the call must also be piaced in shared memory so that
the results can be returned to the calling processs. If the machine is a distributed message
passing machine, then the wire lists and board contents must be transmitted to the processor
executing the called code.

9. EXPERIMENTAL RESULTS

The parallel router was exercised on a circuit board which measured 3 inches by 8
inches and contained 559 wires between 52 integrated circuits. Whilst this is quite a smail
circuit, it was large enough to demonstrate the effectiveness of the router without using
enormous amounts of processor time. The program was run using 1, 2, 4 and 8 processors.
During each run two traces were maintained. The first logged the number of active processes
against time. The second logged the number of wires routed against time, and shows the
progress of the program. These traces are plotted for each of the test runs and are shown on the
next page, although they are not all included in this paper due to lack of space. The activity
traces show how much concurrency is being extracted at any point in time. They all exhibit the
same basic form; they start by using the maximum number of processors, but diminsh as the
run proceeds. The reason for this is that the divide and conquer algorithm proceeds to the
bottom of the recursion tree where it routes as many wires conncurrently as possible,
Consequently, it consumes as many processes as possible. However, the long wires are held
until the shorter ones have been routed. The progress traces also all have the same form. The
shorter wires are routed first and are connected fairly quickly. The more processors available,
the quicker these wires are connected. The longer wires take more time to connect for a few
reasons. First, the basic maze routing algorithm execution time is proportional to the square of
the wire length. Second, the board is already congested by the shorter wires, and thus the
longer wires have to route around them. Third, there are fewer processors which can be
applied to the longer wires because they span more than one board region. Because of these
reasons the curves all flatten out, and the time to route the entire board is dictated by the time to
route the long wires. The results show that increasing the number of processors from 1 to 8
has only decreased the execution time from 180 minutes to 100 minutes.

Because of these problems, an additional level of concurrency was added to the
program. In the modified scheme, the wave front for each wire is advanced by more than one
process, thus speeding the routing of individual wires. This technique is not nearly as efficient
as wiring separate wires concurrently because using more than one process to advance the
wave front requires substantial interprocess communication and synchonisation, whereas the
divide and conquer technique does not require any interprocess communication until all wires at
a level are routed. However, the parallel wave front approach has the ability to speed the
routing of the long wires, which are responsible for controllin g the time to connect the entire
board. Using this scheme, the execution time can be further reduced to 50 minutes. Whilst not
optimal this can constitute a significant speedup. Work is continuing on increasing the
effciency of the algorithms used in the router.
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10. CONCLUSION

This paper has demonstrated how concurrency can be applied to two different
computationally expensive programs. Both use different programming techniques to divide the
problem. The simulated annealing code is best solved using a number of different worker
processes, each of which manipulate and relax a central shared structure. Workers are created
once when the program starts. They resolve their resource contention using simple memory
locks, without the need for complex semaphore or monitor software. Deadlock is prevented by
using a backoff technique. The simulated annealing code exhibits quite good speedup,
especially for large problems. One inefficiency in the algorithm is that it requires shared
resources to be locked so that two processes do not try and move the same tuple. This locking
can make a single process program as much as two times slower than the serial code, although
most of the examples shown in this paper are within 30% of the serial speed. Some work has
been done on the effect of removing the locks altogether, and allowing the algorithm to proceed
with inaccurate values for the costs. Whilst it is too early to report, this scheme seems to
require no more cycles to achieve the same cost solution, and is much faster because the
locking overhead is not present. With this approach, the parallel code could easily be as fast as
the serial version.

The router code uses a divide and conquer algorithm rather than a fixed number of
workers. Each time the board is divided a new process is created, and each time a procedure
call is made a process is destroyed. This fork-join approach has been largely discouraged
because the process creation and destructions costs are usually quite large. However, in this
problem, the cost of routing a number of wires in an area is so high, that the process creation
and destruction costs are not relevant. The algorithm performs quite well on problems with a
very high degree of wire locality, because there are very few wires kept at higher levels of the
call tree. However, as the number of non-local wires becomes significant, the algorithm
performs very badly. This performance degradation is not because of the implementation, but
because the wires held are longer than those passed on, and thus take much lon ger to route
(The complexity increases roughly as the square of the distance between the wires). To make
matters worse, they are being routed by fewer processes; thus the algorithm slows down from
two factors. To improve the performance of this program we have added a second level of
concurrency, which takes over when there are not enough recursive workers to occupy the
multiprocessor. In the second scheme the wave front is advanced by a number of worker
processes, in much the same manner as they are used in the simulated annealing code.

_ Both of these programs have been implemented on shared memory machine. It is almost
impossible to map the simulated annealing efficiently onto a message passing machine because,
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whilst the timetable itelf can be split across many machines, information about the numbers of
teachers, classes and rooms in each period must be available to all processors. Further, this
information is quite volatile, and could not be copied around efficiently. The printed circuit
router could be mapped onto a message passing machine, but the board structure would need to
be transmitted between processors each time a split and join occured. For large circuits, this
could involve quite a large amount of data. Another disadvantage is that the processor which
runs the process at the root of the recursive tree requires sufficient memory to hold the entire
board.

Key sections of these programs have also been written in a functional language called
SISAL [6] for execution on a prototype dataflow machine [7]. Dataflow machines allow easy
extraction of concurrency, and SISAL allows easy expression of concurrency without program
side-effects. (Side effects make it very difficuit to extract parallelism automatically.) The
simulated annealing code has also been written in a low level dataflow language (DL1) and run
on the prototype machine. The results of the simulated annealing code written in DLI were
similar to the shared memory results. Many problems have been encountered in expressing the
problem in the SISAL, mostly because the single assignment property of the language makes it
very difficult to perform parallel updates on shared structures without excessive data
movement. Research is continuing on how to express a class of relaxation problems, like the
annealing code, in SISAL. The low level dataflow language did not present any major
obstacles other than its lack of expressive power as a general purpose programming Janguage.
The concurrency was extracted easily, indicating that the dataflow muitiprocessor was an
appropriate execution environment for this class of problem.

The router was coded in SISAL without difficulty, and aliowed easy expression of the
concurrency described in section 8. However, because of the nature of the problem, the SISAL
implementation required large amount of data to be copied and rebuilt. Research is continuing
on the best way to specify such problems with minimal data movement, without restricting the
concurrency.
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