JOINT ROYAL MELBOURNE INSTITUTE OF TECHNOLOGY AND
COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
PARALLEL SYSTEMS ARCHITECTURE PROJECT

GHC on the CSIRACII
Dataflow Computer

TR 118 090 R

M.W. Rawling 1

t Division of Information Technology
CSIRO
c/o Department of Communication and Electrical Engineering
Royal Melbourne Institute of Technology
124 La Trobe St
Melbourne 3000

Version 1.0 Original Document 26/9/89

ABSTRACT:

This paper describes a Guarded Horn Clauses (GHC) implementation for the RMIT/CSIRO
dataflow machine. Data representations, code templates and theory of operation are all discussed.

GHC on the CSIRAC Il Dataflow Computer
TR118090R
M.W. Rawling
Introduction

GHC is a logic programming language developed by Dr. Kazunori Ueda at the University of
Tokyo, Graduate School. It benefits from a critical examination of existing logic programming languages,
particularly with regards to complexity and parallelism. The result is an elegant and efficient language that
is ideally suited to parallel execution in a dataflow environment. GHC augments the dataflow system by
providing a natural framework for demand driven computation, buffered communication, mutable data and
nondeterminism {1].

This paper discusses some of the important aspects of GHC and its implementation on the
CSIRAC Il dataflow machine being developed at the Royal Melbourne Institute of Technology (RMIT) in a
joint research venture with the Commonwealth Scientific and Industrial Research Organisation of Australia
(CSIRO) [2,3]. Data representations, code templates and theory of operation are given to show how
naturally GHC maps into the datafiow model.

Guarded Horn Clauses (GHC)
From {3}

Syntax
A GHC program is a set of guarded Horn clauses of the foilowing form:
H:-Gyq,....Gml By ... By (m>0, n>0j.

H is called a clause head, G/s are called guard goals, and B/s are called body goals. The
operator is called the commitment operator and that part of a clause before 1" is called a guard, and the
part after ' is called a body. The guard includes the clause head. A GHC program aiso includes a goal
clause of the form:

=By, ... Bp (n>0).
Semantics

GHC uses a restricted form of paralfel input resolution to construct a non-ordered refutation of a
given goal. A proof tree is constructed in executing a GHC program but instead of using multiple
environments (to separate substitutions from different parallel derivation paths) or a complex distributed
backtracking mechanism, GHC ensures the determinacy of interprocess communication data by arranging
for all variable bindings to be unique and global (within their dynamic scope) throughout the execution of a
program. This is achieved through the tollowing ruies:

1 Joint RMIT/CSIRO Parallet Systems Architecture Project,

c/a Department of Communication and Electrical Engineering,
Royal Melbourne Institute of Technolegy,
124 {.a Trobe 51. Melbourmne 3000, Australia.

_ Bules of Suspension

{a) The guard of a clause cannot export bindings to the caller of that clause, and
(b} the body of a clause cannot export bindings to the guard of that clause before that clause is
selected for commitment.

le of Commitmen

To be selected as a substitution clause for a goal G, a clause C must first succeed in solving its
guard (i.e., pass head unification and solve all guard goals subject to the rules of suspension) and then
confirm that no other clauses in the program have been selected for G. If confirmed, C is selected
indivisibly, and the execution of G is said to be committed to the clause C.

The first rule of suspension allows guards to be written in a general manner even though they are
restricted to being observers of external bindings. This observer status imposes a dataflow restriction
upon guards which ideally suits their implementation on a dataflow machine. The second rule of
suspension indicates that a clause body aiso has observer status untit that clause is selected for
commitment, after which the body may export bindings.

The rule of commitment guarantees the required uniqueness of bindings by allowing only the one
selected clause to export bindings for each goal. There is no backtracking upon failure of a committed

clause.
AND Parallefism

GHC supports AND parallel execution of guard and body goals (as opposed to say a left to right
linear approach, although that would also be valid). In fact, head unification (parameter passing) and
execution of both guard and body goals may all be done in parallel provided the rules of suspension are
adhered to. In particular, it is possible to .begin body execution eagerly {i.e., before commiiment is
achieved).

OR Pgralletism

Limited OR parallelism is exploited by trying guard evaiuation {including head unification) of all
potential substitution clauses (i.e., those with matching head functors and arities) for a given geal in
parallel. An eager GHC implementation will also include parallet execution of body goals from different
substitution clauses.

herwi |

GHC aliows the use of the special guard goal ‘otherwise’. This goal succeeds when ail other
guards in a predicate definition have failed. Ueda gives a general definition of otherwise in which normal
guard goals can appear along with an otherwise goal, and more than one clause in a predicate definition
can include an otherwise goal (presumably, such clauses would be mutually exclusive due to head
unification or other guard goals).

Flat GHC

Flat GHC is a restricted form that does not allow user defined predicates 10 appear as guard
goals. This restriction allows a compile time analysis to determine which guard goals may lead o
suspension [1,6]. This allows for a more efficient implementation since special forms of unification, that do
not require the transmission of variable/clause ‘threshold’ information can be used.

implementation

The CSIRAC 1l ‘hybrid’ dataflow architecture combines the features of the static/queued and
dynamic/tagged dataflow models. Some architectural features to bear in mind when considering the GHC
implementation details are as follows:

. Data tokens are of variable length and strongly typed, type checking occurs at run time.

« Short vector and compound (recursive) token types are supported.

. Tokens can queue on input arcs to machine nodes in FIFO order.

. Tokens carry a colour/tag which is involved in both matching and routing. Routing uses token
colour as well as static addressing (node/processing element numbers) to distribute work load.

« Primitive nodes have independent match and evaluation functions. Matching functions are
special operations performed prior to the evaluation of nodes and include a one input bypass
function, two input associative match, deferred storage, etc. [2,5]. Relevant matching functions
and node functioq; are described in a brief glossary at the end of this paper.

Pata Representation
The GHC implementation uses four main data types:

« constants Integers, reals and atoms represented by numeric and string type tokens.

- structures Represented by compound tokens that are of variable length and recursive
e.g., the structure

fred(1,john{2,abc))
is represented by the compound token

cm {cv "fred” 82 i81 cm{cvjohn" i82 i82 cv"abc" }},
where the token types cm, cv and i8 stand for compound, character vector and
eight bit integer respectively. The second component in each compound data
field is the integer arity of the corresponding GHC structure.

« variables Represented by environment tokens which are the dynamic addresses of variable
manager graphs. Requests are made to variable managers through these
addresses.

« resulls Success/ailure represented by boolean tokens.

Lists are simply structures with a ‘.’ functor and appropriate sub-structure. This leads to a strict
implementation of lists that limits concurrency and requires potentially very long compound tokens 1o be
transmitted between nodes in the dataflow graph. Future versions will overcome both of these problems
py implementing lists as pointers to stored cons cells each of which has a head and tail part.

Predicate Translat

paramelas

Pracicate

Figure 1 shows the general dataflow graph

1

11

for a GHC predicate made up of several clause

= %

<5

Clause_1 Clause_2

definitions. All clauses are treated equally with no

special significance given to their ordering within a o i e

paand

Clause n

commit

program. Clauses within a predicate definition share

access to a common commit graph which arbitrates
between them at run time. The resuit of a predicate

wl_w

will either come from a committed sub-clause or the
commit operator itself {(should all clause guards faif).
These mutually exclusive resuit sources are all

merged in the predicate graph to define the cutput of
that predicate.

Clause Transiation

{rigger

rosuk

paramelens

FIGURE 1 General Predicate Dataflow Graph

Clause

Local

Each clause within a predicate definition
shares that predicate's trigger and actual parameters.

Yariables

ic

[2~

A typical clause transiation is shown in figure 2. The
clause graph uses the trigger input to generate local

Heoad Unification

Guard goals

variables (i.e., variables not appearing as formal
parameters). A commit gate controls execution of the
clause body by making the passage of trigger and

ot

Hch

<

body variables conditional upon clause commitment.
This scheme represents a lazy implementation of
clause bodies which overcomes any potential
problems with run away recursions, etc.. Of course, as

PIT(m

1

<L

Body Goals

i

stated above, an eager implementation is stilt valid in
principle.

Suspension

As required by GHC'’s tirst rule of suspension, guard evaluation
suspends whenever it would otherwise cause the binding of a non-local
variable. Figure 3 shows a general ‘wait’ graph that accepts any data type
and returns a non-variable type. In the case of variables, ‘wait' recurses down
binding chains repeatedly calling the special variable manager function
var_Wait until a non-variable is found on the chain (see th~ section on
variables for more detail). The wait graph is also used as a primitive form of
‘eval for arithmetic predicates and also by the data display routines.

resii

FIGURE 2 Genetal Ciause Dataflow Graph

FIGURE 3 Wait Graph

mmitm o e ot

gt 1 ot 2 e 1 shrarns_guaed

Commit

Commitment is achieved Dby a
nondeterministic merge of commit requests from all
candidate clauses with true guards (should all
guards fail then failure of the predicate is reported
immediately). In the current implementation (figure
4) it is the first candidate clause 1o report a true
guard that is selected for commitment, aithough
any other selection process (e.g., random) is
equally valid. Thus the selection process is biased
in favour of candidate clauses with fast’ guards, all FIGURE 4 Commit Graph
else being equal. A single FIRST THEN REST node
uses a special matching function to create a dynamic branch in the dataflow graph which resulis in a true
token being sent to the successful candidate clause and a false token being sent to alf others.

An OR tree detects the failure of all candidate clauses and generates the ‘all_fail’ result for the
commit graph. A restricted version of ‘otherwise’, which allows only one otherwise clause per predicate,
uses the all_fail resuilt from normat clause guards as a success signal for the otherwise goal. Of course,
an otherwise guard can still fail if other goals in the same guard should fail.

in the case of more than one otherwise clause, # is not clear what should happen when more than
one potentially successful otherwise goal is present. A potentially successful otherwise goal being one for
which alf other head and guard unification is already successful. Ueda's suggestion, which calls for an
otherwise goal to succeed only after alf other guards in that predicate have failed, leads to deadlock. This
can be avoided however by allowing potentially successful otherwise goals to compete for selection
nondeterministically. This is in keeping with GHC's commitment process since the success of one guard
implies failure of all others in that predicate. This approach can be implemented by merging otherwise
requests in @ manner similar to normal clause commitment.

request *name”

Var_Manager

Variabl

Request_Select

wek (apey

Variables are supported by statically
assigning a manager graph for each variable that is
not a formal parameter of a clause (figure 5). All
requests for action upon a variable are handled by
the reentrant manager graph in the same colour
(being the colour of the owning clause), aided by the
queueing ability of graph arcs. Care must be taken
to ensure the determinacy of reentrant graphs like
this, compound tokens are used here to limit critical
merges on parallel data paths.

00
(®)

The environment iokens that represent
variables participate in unification and clause
substitution (parameter passing) in the same way as

her . These tokens can hought of a
other data types ¢ an be thoug S FIGURE 5 Variable Manager Graph

pointers to the dynamic address of the manager graph where the variable’s current binding is stored.
. Variable managers support unification, waiting, reading (same as waiting but does not wait for the variable
to be bound) and display of variables.

in GHC many unifications may attempt to bind a variable at the same time, so there is a need to
prevent races andfor contention during variable binding. Various methods are available including
semaphores, consistency checks, etc., however the current implementation uses a single
FIRST THEN REST node in a manner similar to clause commitment. The region of the manager graph that
does the actual binding is executed once only by the first Var_Unify request. Later requests read the
original binding and call unify recursively.

in the full GHC implementation, the variable manager contains code to check the current binding
threshold during variable unify requests. Any attempt to bind above this threshold leads to suspension, as
if the variable was already bound. A single machine node (STORE DEFERRED) queues suspended wait
requests for a variable and automatically transmits a non-variable binding when i occurs. The simple
STORAGE node used in the ‘read’ section of the manager does not defer read requests and is used by the
display routines to determine if a variable has been bound at all. If a variable has no binding, the
STORAGE node will return a ‘null’ token and the variable will displayed in the traditional ‘A = A’ style.

At this stage there is no automatic ‘dereferencing’ of variables so that long variable to variabie
hinding chains can build up, adversely effecting efficiency. in future versions these long binding chains will
shortened by asynchronous dereterencing processes spawned each time a variable is interrogated, thus
the chain A » B> C > 123 will be shortened to A> 123, B>123, C> 123 upon a wait or read call {o A.

Unification

The unification algorithm is made up of

a type selector and five subfunctions for “‘""l—s"’“
handling different argument type combinations | — 1;
(figure 6). The type selector (figure 7) uses a i
combination of fests, switches and merges to swe [] owa |} swe
route the arguments to one of five different * i =
output port pairs. =
theld w v Q\”‘_“;
Type_Seiect cms;gc;"“ . |
la Struet | Ha Struct
Struct_Const I el =
Urety e : swz : swe
Struct Struct I] ::
Urify anc
= D]
]
FIGURE 6 Unify Graph FIGURE 7 Unify Type Selector Graphs

Cunpare_Functors

Compare_Arities

called by unify to handle each of the different .
type combinations. The threshold input is not
used by these routines directly but must be
maintained for use during variable binding. ¢

Struct_Const ———
Unify frlne Im ;w }m Ehﬁm
Const_Const_Unify uses a single low @ Torm_Unity

level node (EQUALS) to unify two constants by
direct comparison. 1 . v

Vo v
Unify
A structured itemn can never unify with a Yo~ } “”, Nm,
constant and so Struct_Const_Unify always fails
immediately. A PASS IF PRESENT node emits a
FALSE token when fired by the unification trigger.

In Struct_Struct_Unify, two structured Fandes . .
terms are first compared for functor and arity @ @
and i these are equal then unification recurses @
over pairs of corresponding structure elements {

in parallel. Figure 9 details the subgraphs called

by Struct_Struct_Unify. Gompre) B o
()
The Term_Unify subgraph uses @ @ @
PROLIFERATE, SEQUENCE and TRANSMITTED @ swi
READ nodes to generate queues of |

corresponding element pairs. Tightly pipelined FIGURE 9 Struct_Struct_Unify Subgraphs
unifications of these pairs then proceeds in

paralle! because of the run-time distribution of function calls used in the hybrid dataflow modetl. Efement
unification results are conjoined in a tight loop under control of a SWITCH node and a boolean stream
genherated by the SEQUENCE node.

Figure 8 gives details of the subgraphs [Geee == i Swoct swue | 1]

P4

[

FIGURE 8 Uniiy Subgraphs

A variable is unified with a non-variable using the variable manager call Var_Unify. Two variables
are handled by Var_Var_Unify which first imposes a partial order on the variables and then unifies the first
variable to the second by calling Var_Unify. The ordering of variables is such that unbound variables in a
clause always bind towards ‘variabtes in an ancestor clause. Actually, it is possible to bind variables in the
opposite direction, i.e., ancestor variables bind towards child variables, these two directions have different
consequences for both debugging and efficiency. For two different variables in the same clause, the
ordering is arbitrary bar that it must be consistent {to avoid loops). The ordering is achieved by a single
node (GREATER THAN SWAP) which directly compares the variables’ environments.

Theoty of Operation
Translat intermediate Form

The intermediate formv/assembly language used by the CSIRAC If system is a block structured
dataflow language called ‘i2’ [4]. Each i2 function call is either a call to a user defined function or a
primitive machine node. Nodes with special matching functions are indicated as mf.nf where mf is the
matching function and nf is the node function. The following i2 translation of a clause from a GHC prime
number generator will be used to illustrate the operation of the GHC system in more detail. The
corresponding dataflow graph is given in figure 10.

Example of clause fransfation:
GHC clause:

filter(P, [X|Xs], Ys) :- X mod P =\= 0 | Ys = [X|Ys1], filter(P, Xs, Ys1).

i2 translation:

1 define filter_ 3 Z{trig pl p2 p3 commit} ~> guard result;
2 begin

3 tx% HEAD *#*

4 yle{trig) =-> thold:

5 {ply —-> B;

& wait (p2) ~> wpZ;

7 cap(X ‘em f{cv 1 "." i8 2}'} -> liv 1;
8 cap(Xs lit_1) -»> lit_2;

S unify {thold wp2 1lit 2} —-> head;

10 {p3) > ¥s;

11 f** GUARD *%

1z wait (X) -> sys_arg 1;

i3 wait (P) -> sys_arg 2:

14 mod (sys_arg 1 sys_arg 2} -> sys arg 3;
15 ne (sys_arg_3 'i32 0') -> sub_guard;

16 | ** BODY **

17 cap(X’ 'em {ev L "." 18 2}'}) -> lit 4;
18 cap(¥sl lit_4) -> sys_arg_4;

19 Var Unify(trig’ Ys® sys_arg_ 4) -> sys_arg 5;
20 filter 3{trig > P' Xs' ¥Ysl) ~> sys_arg 6;
21 and(sys_arg 5 sys_arg_6) -> result;

22 | ** COMMIT =**

23 and{head sub _guard) -> guard;

24 pit{trig commit}) —> trig’;

25 {trig'} => theld’;

26 pit {P commit} -> P°:

27 pit (¥ commit) -> X°;

28 pit (Xs commit}) -> Xs';

29 pit{¥s commit) -> ¥s';

30 | ** LOCAL VARIABLES **

31 make var(X,'ev 1 wX*',thold);

32 make wvar(Xs,'cv 2 "¥s"',cthold};

33 make var(Ysl,'cv 3 "Ygli"',thold };

34 end;

Each clause operates in its own colour (which is determined dynamically as part of the standard
function call mechanism) and all variables created in that clause also have that colour. Variabte
parameters do not exist as clause owned variables but are passed by data flow directly through the call
interface (e.g., in line 5 parameter p1 is aliased directly to the local variable P — it would also be correct,
but far less efficient, to create P as a local variable and unify pt with P). Non-variable formal parameters
are created as literals and unified with their corresponding actuals (e.g., the structured term [X|Xs] is
created in lines 7 and 8, and then unified with wp2 in line 9). In this case suspension is mandatory should
the actual parameter be a variable and so the parameter is ‘waited on’ until it is non-variable (line 8). This

is more efficient than calling unify directly, although that would also succeed since an attempt to bind a
variable parameter would defer due to suspension and the variabie would be waited on at that stage.

Alt clauses, goals and some system predicates have a trigger argument that is used {o generale
literals and thresholds. In full GHC transiations the trigger has a special value, being the colour of the
calling/parent clause. This colour is used as a threshold value for determining when attempts to bind
external variables should suspend. in fine 4 the colour of the trigger is used to generate a threshold for the
guard of the current clause, but in line 25 the trigger itself is passed to the body as its threshold upon
commitment. Thus a cormnmitted body can bind variables up to the threshold of its parent clause. in flat
GHC the threshold of every ancestor clause is always zero (and is thus not needed) since the path of
commitment always extends back to the main goal, whereas in fuli GHC the path of commitment may
terminate in the goal of an ancestor clause (recall that flat GHC does not allow user defined predicates to
appear as guard goals}.

i ut (F [ad 1 (¥sy

Note the static evaluation of the arguments of [Fesz

=\= in lines 12-14. As part of this evaluation, variables @
are waited on in expectation of them becoming e :
numbers (type checking occurs at run time). The
second argument is evaluated and planted as a ‘ -
machine node literal in line 15. The conjunction of il O B C
clause head unification and guard goal evaluation HoD Walk | Frocm_Buid (!
defines the clause guard and is sent as a commit . Ji==s
request 1o an external manager via the clause output - hid
arc ‘quard’ (line 1 and figure 10). A boolean token will
arrive on the clause input arc ‘commit’ indicating the jse
success or failure of the commit request. This token e /PD_ orre
controls the generation of body triggers and :«r:;-} T } — T
thresholds and the passage of parameters and guard [
variabies into the body {lines 23-29). Torm_Boda ()

e]

Body variables {i.e, variables used only in the uniey P
body of a clause) are created after commitment by
the body threshold (thold’, as used to create Ys1 in .
line 33). Waiting for commitment reduces the work s
done by clauses which fail to commit although it may ~ FIGURE 10 Dataflow Graph of Clause filter/3(2)

eventually prove that a more eager approach is justified. One reason for the current lazy body evaluation
is that a garbage collection scheme has not been implemented yet.

W A v

Make_Variabie 3

AND

The conjunction of body goals forms the final result refurned to the parent goal in the form of a
simple boolean token (line 21). This and other clauses that make up the definition of the fiiter/3 predicate
are catled by a common handler which aiso includes the commit subgraph, see figures 1 and 4.

~ Conclusions / Future Work

The GHC implementation described here has been running programs on the RMIT/CSIRO
dataflow machine simulators since early 1989. Early performance characteristics are promising with even
trivial GHC programs generating useful run-time concurrency. However, several aspects of the system
require further attention and templates are currently being designed for the following additions:

» Garbage Collection.

Variable Dereferencing.

Eager Body Evaluation.

List Optimisation.

Dynamic Evaluation.

Compile Time Analysis {mode declarations, etc.).

*» 8 8 = &

Implementation of these features is already weil understood with the possible exception of eager
body evaluation. Eager evaluation has significant implications for garbage collection and resource
management. It is also related to partial evaluation within the dataflow framework where the extra code
required to control resource utilisation and non-strict evaluation must be carefully weighed against
possible efficiency gains.

There is scope for very significant performance improvements with detailed compile time analysis,
particularly when aided by GHC's mode declaration system. The handling of variable unification,
especially in full GHC, is clearly very costly compared to a simple dataflow approach, however, using
compile time analysis and mode declarations it will be possible to identify and optimise dataflow variables
(i.e., variables which are assigned once). A dataflow variable will not require @ manager graph at all,
instead its definition can be sent directly to its uses. The performance of GHC programs compiled in this
way should be highly competitive with that of programs written in more traditional functional/datafiow
languages.

Acknowledgements

The author is indebted to Dr. Kotagiri Ramamohanarao of Melbourne University for his invaluable
assistance and advice in designing the GHC templates described here. Thanks also to Jacek Gibert for
his contribution to the initial development of the GHC system described in this paper.

Glossary of Node Functions

CPT Compare Type Logical type comparison.
EQ Equal Logical value comparison.
NE Not Equal
AND Logical AND
Swi Switch Redirects arg0 according to boolean argi.
PiP Pass If Present Passes arg0 on arrival of arg1l

{for graph synchronisation and generation of literals).
PiF Pass If False Passes arg0 if argt is false, else consumes arg0.
PIT Pass if True Passes arg0 if arg1 is true, else consumes arg0.
TRD Transmitted Read Reads elements of vectors/compound tokens.
PRO Profiferate Generates arg1 copies of arg0.

ADD Arithretic Addition

10

MQD Modulus Evaluates arg0 mod arg1.

SEQ Sequence Generation Generates arg1-1 'falses’ followed by a 'true'.

SRL Set Return Link Creates a return address for function calls.

E Exit Sends a function result (arg0} to a return address (arg1).

STO Storage Permanent {non-destructive) storage.

STHb Deferred Storage As above, but queues read requests until non-empty.

FTR First Then Rest Diverts the first token in a queue away from all others.

Y1.C Yield Colour Returns the dynamic colour of its argument.

STN Set Name Sends arg 0 to address arg 1 without altering the current colour.

TS Transmitted Distribute Splits the compound on input 0 into ncomponents where nis the
number of outputs on the node. Unused fields are sentas a
compound token to the last output.

CCM Create Compound Creates a two element compound token from its two inpuis.

CAP Compound Append Appends arg0 to the end of the compound token argl.

References

[

(2]

(3]

[4]

5]

6]

K. Ueda, ‘Guarded Horn Clauses’,
D.Eng. thesis, University of Tokyo Graduate School, March 1986.

M. W. Rawiing, ‘Implementation and Analysis of a Hybrid Dataflow Systent’,
M. Eng. thesis, Royal Melbourne Institute of Technology, March 1988.

D. Abramson and G.K. Egan, ‘Design Considerations for a High Performance Datatlow
Muitiprocessor’, RMIT technical report TR 112-73-R, Aug. 19388.

G.K. Egan, M. W. Rawling and N.J. Webb, ‘12: An intermediate Language for the RMIT Dataflow
Computer, RMIT technical report TR 112-68-R, Dec. 1988.

G.K. Egan, ‘The RMIT Dataflow Computer: Token and Node Definitions’,
RMIT technical report TR 112-60-R (internal), Dec. 1988.

S. Gregory, '‘Design, Application and implementation of a Parallel Logic Programming Language’,
Ph. D. thesis, imperial College of Science and Technotogy, London, Sep. 1985.

11

