LABORATORY FOR

CONCURRENT COMPUTING SYSTEMS

COMPUTER SYSTEMS ENGINEERING
School of Electrical Engineering
Swinburne Institute of Technology

John Street, Hawthorn 3122, Victoria, Australia.

The CSIRACIX
Dataflow Computer

Token and Node
Definitions s

Technical Report 31-001
G.K. Egan

School of Electrical Engineering
Swinburne Institute of Technology
John Street
Hawthorn 3122
Australia

¥
Original Document October 1979 Victoria University of Manchester
Revision 2.7 May 1990
Abstract:
This document the architecture of CSIRAC II developed originally at the Victoria
University of Manchester. The architecture falls outside the accepted of taxonomy of static
and dypnamic architectures as it contains features of both.
N

\:

Token and Node Definitions
1. INTRODUCTION

1.1 General Characteristics

1.2 Emulation/Simulation Facility

2. TOKENS
2.1 Mame
2.2 Colour

2.3 Data Fields
3. TOKEN TYPES

3.1 Simple Types

3.1.1 Real
3.1.2 Integer
3.1.3 Character
3.1.4 Bit

3.1.5 Byte
3.1.6 Word
3.1.7 Null

32 Compound Type
3.3 List Markers

3.3.1 Start of List
3.3.2 End of List

34 TagTypes
3.4.1 Type
3.4.2 Name

3.4.3 Colour
3.4.4 Environment

3.5 Exception Types

3.5.1 Don't Know (7)
3.5.2 Trace

3.6 NodeType
3.7 Internal System Types
3.8 Structure Descriptors
3.8.1 Read Descriptor for Transmitted Objects
3.8.2 Write Descriptor for Transmitted Objects
3.8.3 Read and Write Descriptors for Stored Objects
3.8.4 Copy Descriptor for Stored Objects
3.8.5 Fill Descriptor for Stored Objects

3.9 Type Mnemonics

Page

1

Token and Node Definitions

4. NODES

4.1

Function Fields

5. NODE FUNCTIONS

5.1

5.2

5.3

5.4

5.5

5.6

Computational Functions

Arithmetic
Loglcal and Set
Relational
Sortmg

.5 Sequence

th’!U‘tU‘th
)——A)—lr-—ik—l)v—-*
U\-hwt\)*-—*

Type Functions

5.2. 1 Coercion
5.2.2 Type

5.2.3 Compound Token Constructors

Object Manipulation Functions

5.3.1 Transmitted Objects

5.3.1.1 Transmitted Token Lists
5.3.1.2 Transmitted Vector and Compound Tokens

5.3.2 Stored Objects (I)

5.3.2.1 Stored Vector and Compound Tokens

5.3.2.2 Stored Token Lists
5.3.2.3 Reference Count

5.3.3 Stored Objects (II)

Path Control Functions

5.4.1 Replication
5.4.2 Synchronisation
5.4.3 Gating

5.4.4 Name

5.4.5 Sequence

Colour Functions

5.5.1 Direct Colour Manipulation
5.5.2 Context

Priming Functions

Page

2

Token and Node Definitions

6. MATCHING CLASSES

6.1 Bypass

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

| 6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21

- Normal

Empty

Start

Finish

Cons

List
Concatenate
Bracket
Unbracket
Head

Rest

Get

Store

Store and Reset
Store Deferred
Store Update
First

Prime

Protect

Arbitrate

7. SYSTEM NODES

7.1 System
7.2 Input Qutput
REFERENCES

APPENDIX A - Well Known Names

Page

3

. Token and Node Definitious Page 4

1. INTRODUCTION

This document describes the Token and Node Set -of CSIRACTIL. The original forms of which are
described in [1] and were implemented on a pilot multi-processor in 1978. The system does not
conform to the normally accepted two-class (static [2] and dynamic [3]) taxonomy of data-flow
systems,

1.1 General Characteristics

Although it is not the intention of the document to provide an overview of the architecture, which
may be found in [4], the following is presented for context:

1) The system hardware consists of a number of processing and structure-store elements,
communicating over a multi-stage packet switched network.

2) Tokens are strongly typed and of variable length. The token-types are not constrained to
simple objects but may be complex e.g. the node descriptions which comprise the graph to be
evaluated.

3) Node-functions are weakly typed and accept a set of argument types; this increases graph
generality while reducing the size of the node-function set. Type coercion is performed
where sensible. The node functions are of fine to medium granularity e.g. arithmetic and
vector inner product respectively. :

4) A variety of structure manipulating mechanisms are provided including both stored and
transmitted lists, vectors and records. These are supported in sufficient generality to allow
for example lists of lists of vectors.

5) Input-output is accomplished using system nodes. The names of these nodes are associated
with particular input or output devices, which in turn are associated with particular
processing- elements. As these nodes already exist within the system, they must be linked
into the graph at load or evaluation time; this is done by sending response-destination
tokens to the appropriate nodes.

6) The architecture supports re-entrant sub-graphs in sufficient generality to allow multiple
concurrent mutual recursion. Tokens involved in concurrent invocations of a shared
sub-graph are separated by means of a colour. Temporal ordering of tokens is
preserved by strict queuning of tokens of the same colour on any given arc.

Tokens of differing colours may overtake allowing full unravelling of re-entrant graphs.

1.2 Emulation Facility

A multi-processor facility has been constructed 1o support message passing MIMD architecture
studies [7]. Considerations of emulation efficiency have had some impact on the representations of
objects described in this document and therefore object field definitions should be regarded as
mutable.

Token and Node Definitions

2. TOKENS

Page 5

A BNF like notation is used for definitions. All tokens carry name, data fields and as required a
colour tag distinguishing it from other invocations of the target node. The data fields contain type,
length and data. Tokens are of variable length and the data may consist of none to several datum of
simple to complex type. In the current implementation all objects in the system are described by a
sequence of one or more 16 bit words.

< pame ><colour>< data fields>

< process >< element >< element object > <input point >< monadic>
L]

<token>:=

2.1 Name

<name> 1=

8 8
<Process>ii=
<glement>:=
<element object>u=
<input point>:=
<monadic>:=
2.2 Colour

<colour>=

2.3 Data Fields

<data fields>n=

22 1 i

distinguishes separate graphs running concurrently in
the system. This field is set by the Joader.

the physical processing or structure storage element 1o
which the token is directed.

the name of the object within the partition of the graph
or stored objects assigned to the target element.

specifies to which input point of the <element object> the
token is directed.

when true indicates that the matching process may be
bypassed.

used as a qualifier for the statically allocated <name>
fields linking <nodes> in shared invokations.The
<colour> is an internally generated unique 38 bit
{See Colour Functions).

< type >< data >
8
< type >< ><data >l

< type ><length >< data >l
24

Token and Node Definitions Page &6

< type >< length >< low bound>< data >
16

<type>:.= the type of the data (See Token Types).
dcngth>::= where appropriate the length of the vector in units of
datum length.

<low bound>::= two's complement vector low bound for vector types.

<data>;= the token's data.

3. TOKEN TYPES

The specific forms of <data fields> are described in the following sections. In general vectors are
transmitted least significant element first (element 0).

Some variants of the generic types are not currently implemented in the simulators and emulators
(See Implementation Restrictions).

3.1 Simple Types
3.1.1 Real

A reference to real implies any one of the followin g <types>.

< real32 >< ><IEEE single precision>
& 32

< real6d >< >< IEEE single precision (ms words first)>
64 6‘:\"'\‘ .
<real32_vector ><length ><low bound>{< IEEE single precision>}
_ 33 _

<reai6d_vector >< length ><low bound>{< IEEE double precision>}
- 64

3.1.2 Integer -
A reference to int implies any one of the following <types>.

< int8 >< two's complement integer>

<intlé >< ><two's complement integer>
g 16

<int32 >< ><two's complement integer>
8 32

< int§_vector ><length ><low bound>{< two's complement integer>}
8

Token and Node Definitions Page

<intlé vector ><length ><low bound>{< two's complement integer>}
B 16

< int32_vector >< length ><low bound>{< two's complement integer>}
32

3.1.3 Character

A reference to chars implies any of the following types.

< char >< ASCI] char >
8

< char_vector >< length ><low bound>{< ASCII char >}
8

Note: character vectors are ASCIH nul padded to least significant byte of least
significant i.e. last transmitted <word> boundary.

3.1.4 Bit

A reference to bits implies any of the following types.

< bit >< >{< truel false >}

7
< bit _vector ><length ><low bound>{< true | false (Is bit first>}
1
< frue >i= single bit set.
< false >u= single bit clear.

Note: bit vectors are false padded to least significant bit of least significant
i.e. last transmitted <word> boundary.

3.1.5 Byte

A reference to bytes implies any of the following types.

< byte >< bit field >
8

< byte vector ><length ><low bound>{< bit field >}
8

3.1.6 Word

A reference to words implies any of the following types.

< word >< bit field >
16

< word_vector >< length ><low bound>{< bit field >}
16

7

Token and Node Definifions : Page 8§

3.1.7 Null

<null >< >
8

3.2 Compound Type

Compound tokens differ from vector tokens in that they may be used to carry several datum of
differing types. Each datum therefore carries type and where necessary length fields.
< compound >< length >< data fields >

length length in < word> units of the data fields.
3.3 List Markers

List markers are used to delimit streams. Nested lists are supported. A reference to list markers
means any of the following types.

)

3.3.1 Start of List

<starf_of list>< >
8

3.3.2 End of List

<end of list>< >
8

3.3.2 Inter List

Inter list tokens are used to mark the outermost end-of-list on lists or nested lists.

<inter_list >< >
8

3.4 Tag Types

The following types are associated with token context tags.

3.4.1 Type -~
< type ><type >l
< type ><type ><length >|
< type >< type><length ><Jow bound>
3.4.2 Name

< name >< ><name >
8

<name_vector >< length ><Jow bound >{< name >}

Token and Node Definitions Page 9

3.4.3 Colour

< colour >< ><colour >
8

< colour_vector >< length >< low bound >{< colour >}

3.4.4 Environment
The environment token carries the calling environment context {See Colour Functions).

< environment >< >< name ><colour>
8

3.5 Exception Types
3.5.1 Don't Know (?)

Sent to successor nodes on the occurrence of an exception. The <environment> in which the
exception occurred is preserved by successor nodes. '

A fatal exception such as the use of a token not of type bit where required for path control (See
Path Control Functions) causes the ? token to be sent to the system exception node (See System
Functions).

< ? >< Jength >< reason ><environment>>
16

< ? >< length >< reason >< environment>< token |

< ? >< length >< reason >< environment >< token >< data fields >

length in <word> units.

<TeAsOn>ii= noobject name object does not exist
emptyobject empty object
notname name type expected
notcolour colour type expected
notenv environment type expected
nothits bits type expected
argtype unexpected type
nofvector vector type expected
indexrange index cut of range
toolarge magnitude of datum too large
toosmall magnitude of datum too small
toopos positive overflow
tooneg negative underflow
divzero divide by zero
nocoerce type coercion not possible
msover matching store overflow
osover object store overflow
nsover node store overflow

The reason mnemonic is given in boldface.

name the name of the destination object at which the exception
occurred.

Token and Node Definitions Page 10

token where appropriate the exception causing token.

data fields where appropriate the matching token's data fields.

3.5.2 Trace Type
Sent to system trace node when the trace bit of a < node > or object in the object store is accessed.
<frace>< length><environment>|

<trace>< length><environment>< function fields I allocation_desc >< arguments >< result >

length in <word> units.
environment <name> and <colour> of the object being accessed.
function fields if the destination object is a <node> its
<function fields> or .
allocation_desc if the destination is an object in the object store its
<allocation_desc>.
<arguments>;;= argument <data fields>.
<result>:= resuft <data fields>.

3.6 Node Type
<node ><length >< name >< node >
length in <word> units.

node node function description (See Nodes).

3.7 Internal System Types

There are 2 number of system token types used for internal system communication which are
beyond the scope of this document.

3.8 Structure Descriptors

The structure descriptors are in fact compound tokens although their defined structures allows
them to be viewed as ‘psuedo’ types.

3.8.1 Read Descriptors for Transmitted Objects

 Vector or compound transmitted object fields may be accessed using the following descriptor:

<nufl>|
< intl6 ><index >
<intl6_vector >< indices >

Token and Node Definitions Page 11
The descriptor forms are used as follows:
<nuli> Retarn the entire object

<int16>/<int1l6_vector> The index or index vector is used to access
recursively target data, datum or datum field.
If a datum is reached and the indices are not
exhausted then the remaining indices are used
to access datum fields.

3.8.2 Write Descriptors for Transmitted Objects

The write descriptor is similar to the read descriptor the <data fields> to be written followin gthe
indexing ficlds.

< compound >< length >
[<nuii>i
< intl6 ><index0 >}
< intl6_vector >< indices >]
< data fields >

<null> Overwrite the entire object

<int16>i<intl6 vector> The index or index vector is used to access
recursively target data, datum or datum field.
If the target is a vector element and the
descriptors <data fields> contain a vector
the last indice specifies the starting element
and the <length> of the descriptors <data
fields> determines the number of elements
to be overwritten.

If the object is a stored list then the element
indexed by index0 is overwritten.

3.8.3 Read and Write Descriptors for Stored Objects
Stored Vector or compound object ficlds may be accessed using the following descriptor:

< intl6 ><index >
< intl6_vector ><indices >

The descriptor forms are used as follows:
<int16>l<int16 vector> The index or index vector 1s used to access
recursively target data, datum or datam field.
If a datum is reached and the indices are not

exhausted then the remaining indices are used
to access datum fields.

3.8.4 Copy Descriptor for Stored Objects
Blocks of stored objects may be copied using the following descriptor:

<intl6_vector >< old base index ><length>< new base index >

Token and Node Definitions Page 12

3.8.5 Fill Descriptor for Stored Objects
Blocks of stored objects may be initialised using the following descriptor:
<intl6_vector >< base index >< length >

The data for block fills is provided as the other argument of the structare block fill function.

3.9 Type Mnemonics

R32 real32

R64 real64d

R32V reai32_vector

R64V real64_vector

18 int8

116 intl6 '

132 int32

I8V int8 vector

116V intl6_vector

132V int32_vector

C char

v char_vector

B bit

BV bit_vector

BY byte

BYV byte _vector

WD word

WDV word_vector

N null

CM compound

S start_of list

E end_of _list

EE inter list

TY fype

NA name

NAV name_vector
colour

CLV colour_vector

EN environment

Q ?

Token and Node Definitions . Page 13

4. NODES

<node>:i=

< function fields >
32

< function fields >{<name>}|
< function fields >{<data fields >}I

< funcdon fields >{< data fields }{<name>}

4.1 Function Fields

<function fields>::=
< literal present >< trace >< match class >< function >< no. of dests.>
1 1 6 8 8
"
<literal present>::= when true indicates that the <node > has a literal

argument in <data fields>*.

<frace eval>:= when true causes a trace token to be sent to the
system frace node (See System Nodes).

<function>::= the name of the node function (See Node
Functions).

<match class>i= the matching class to be used with node operands
(See Match Classes).

<no. of dests.>:;= number of <name> fields or successor
objects.

*]iterals are confined to what may be carried in a single token including
vectors and compound tokens. list literals are not permitted.

5. NODE FUNCTIONS
Node functions are either monadic or diadic. In principal any <match class> that produces one
argument (<arg.0> or <arg.1>) may be used with a monadic function and any <imatch class>
that produces two arguments (<arg.0> and <arg.1>) may be used with a diadic function; the
combination may not however always be sensible.
The following pseudo types are defined to reduce the complexity of the descriptive material:

< real > :=real32ireal64 | real32_vector | real6d_vector

<int > = int8 [intl6 1int32 | int8 vector 1intl6_vector | int32_vector

< chars > = char | char_vector

< arith > == real lint | colour | colour_vector

< bits > = bit | bit_vector

Token and Node Definitions Page 14
< logical > 1= bit | bit_vector | byte | word

< list_markers > ;1= start_of_list | end_of_list | inter list

5.1 Computational Functions

The set of computational functions will be extended to include additional functions such as
hyperbolics. The intent is to increase the general function granularity.

Vector operands of diadic functions must be of equal length.
Unless specified otherwise the type of arg.1 must be compatable with arg,0. Type coercion is

performed where sensible. e.g. for multiply where one operand is int and the other real, the int
operand is coerced to real and the result of the function is real.

5.1.1 Arithmetic

Diadic
ADD arg.O:arith + arg.l1 -> out:arith ’
SUB arg.(rarith - arg.l -> out:arith
MUL arg.Q:arith * arg.1 -> outarith
INR inner product::=
inner product of arg.Q:arith and arg.l -> out: arith
DVD arg.G:arith / arg.l -> out:arith
DIv arg.0int div arg.l:int -> outiint
MOD arg.(iint mod arg.l:int -> outint
PWR arg.O:arith ~ arg.l:arith -> outarith
Monadic

All of the diadic functions above with one literal argument.

NEG- - arg.(rarith -> out:arith i
ABS absolute(arg.Q:arith) -> out:arith

EXP e/ arg.l:arith -> outireal

LNE log,(arg.O:arith) -> out:arith

LN2 logy(arg.Oiarith) -> out:arith

LOG logglarg.O:arith) -> outarith

SQT square_root(arg.(Gharith) -> outarith

SOR squarefarg.O:arith) -> out:arith

SIN sine(arg.Q:arith) -> out:arith

Token and Node Definitions Page 15
COS cosine(arg.O:arith) -> out:arith
TAN tangent(arg.O:arith) -> out:arith

Arguments for the above trigonometric functions are in radians.

ATN arc_tangent(arg.Q:arith) -> out:arith
ASN arc_sine(arg.Q:arith) -> out:arith
ACS arc_cosine(arg.(:arith) -> outarith

5.1.2 Logical and Set

Diadic
AND arg.0:logical and arg.] -> out:logical
OR arg.O:logical or arg.1 -> out:logical
IMP arg.O:logical implies arg.1 -> out:logical :
EQV arg.0:logical equivalent arg.1 -> out:logical
NQV ~(arg.0:logical equivalent arg.1) -> out:dogical
TSB test_bit{arg.(:logical, arg.1:int) -> out:bit |
STB | set, bit(arg.(}:logicatl, arg.l:int) -> out:fogical
CLB clear_bit(arg.0O:logical, arg.l:int) -> out:logical
SHD shift_down(arg.0:logical, arg.l:int) -> out:logical
SHU shift_up(arg.O:logical, arg.1:int) -> outlogical

SHU is false filled. The <length> of the result is adjusted appropriately for both the SHID and
SHU functions.

Monadic
All of the diadic functions above with one literal argument.
MSB most_significant_bit(arg.O:logical) -> outintl6
NOT ~arg.O:logical -> out:logical

5.1.3 Relational

Relational operations on char_vector are over the entire vector i.e. they are string comparisons.
Relational operations over arith vectors are element by element yielding a bit_vector result.

Diadic
EQ arg.0 = arg.l -> out:bifs
NE arg.0 <> arg.l -> out:bits

GE arg.0: arith,chars,bits >=arg.l -> outbits

Token and Node Definitions Page 16

GT
LE
LT
RA'

Monadic

arg.0: arith,chars,bits > arg.1 -> out:bits

arg.0: arith,chars,bits <= arg.]1 -> out:bits

arg.0: arith,chars,bits < arg.1 -> out:bits

range ;1= ‘
(arg.0: arith,chars >= arg.1{0]) and (arg.0 <= arg.1{1]) -> out:bits

All of the diadic functions above with one literal argument.

5.1.4 Sorting

Diadic
GTS

LTS

WDW

OFF

Monadic

greater than swap 1=
if arg.O:arith,chars,env > arg.] then]
arg.0 «> out.0;
arg.1 -> out.1
else
arg.1 -> out.0;
arg.0 -> out.1;

less than swap 1=
if arg.0: arith,chars,env < arg.] then
arg.0 -> out.Q;
arg.l -> out.1
else
arg.1 -> out.(;
arg.0 -> out.1;

if arg.O:arith,chars,env >= arg.1 then
arg.0 -> out

else
arg.1 -> out

if arg.0: arith,chars,env <= arg.1 then
arg.() -> out

else
arg.1 -> out

window ::=
if arg.0: arith, chars < arg.1{0] then
arg.1{0] -> out
else
if arg.0 > arg.1[1] then
arg.1[1] -> out
else
arg.0 -> out

offset ::=
arg0[0]-argO[1]+arg0[2]: int->out.0
(arg0[0)>= arg0[1}) and (argO[0<=(arg0{0]+arg0[1]-1)->out. 1:bit

All of the diadic functions above with a literal argument.

Token and Node Definitions Page

5.1.5 Sequehce

Monadic
SUC arg.0:bits,chars,int,colour + 1 -> out:bits,chars,int,colour
PRE arg.0:bits,chars,int,colour - 1 -> out:bits,chars,int,colour

The result of these functions is bounded by the type value range.
5.2 Type Functions

5.2.1 Coercion
Diadic

COE coerce <type> of arg.0to arg.l:type->out

17

COE is an important constructor function which makes the best attempt at conversion by example
to the target type. Note that because the top 8 bits of the <length> field in the type token 1s used

to specify the target <type> the target length is limited to 213-1.

Monadic

The COE function with a literal argument.

ORD ordinal(arg.0:bit,int,chars) -> out:int
CHR character{arg.0O:int,chars) -> out:char
RND round(arg.(:arith) -> outint
TRN truncate(arg.0:arith) -> outint
FLT float(arg.0:arith) -> outireal32 |real32 vector
DBL double_precision(arg.0:arith) -> out: real64 | real64_vector
Ex;ﬁlicit conversion functions may have some evaluation time advantage over the more general
COE function. . B
5.2.2 Type
Diadic
CPT compare type::=
<type> of arg.0 = <type> of arg.1 -> out:bit
ERR 18 error 1=
<type> of arg.0 is ? and <reason> = arg.l:int -> out:bit
Monadic

The CPT function with a lireral argument.

TOF <type> of arg.0 -> out: {ype

Token and Node Definitions Page 18

5.2.3 Compound Token Constructors

Diadic
FMC form compound token::=
flatten and append arg.1 to arg.Q -> out: compound
CCM concatenate compound token::=
concatenate arg.l to arg.Q -> out: compound
CCN cons compound token::=
cons arg.l to arg.0 -> out: compound
CAP append compound token:;=
append arg.l to arg.0 -> out: compound
Monadic
CGT get compound token::= !
first datum of arg.Q -> out.0
rest->out.1

An important use of the compound token constructors function is the generation of descriptors
for accessing the fields of vector and compound types (See Structure Descriptors).

5.3 Object Manipulation Functions
5.3.1 Transmitted Objects

5.3.1.1 Transmitted Token Lists

Many of the operations on transmitted lists are provided by ta node's <matich class> (See Match
Classes). Those that are associated withe the node's <func> are detailed below. Indexing
functions may be used to access < data fields > of defined complex types such as ?; complex
types may be regarded as compact representations of commonly used compound types.

Restrictions to prevent the synthesis of < names > may apply. In particular the manipulation of
< process > 1s not permitted.

Diadic
LFL fist fill o=
create list of length arg.1:int16 with element values arg.() -> out
Monadic
LCL collapse transmitted list::=

arg.0 absorbing < list markers > -> out

Token and Node Definitions Page 19

5.3.1.2 Transmitted Vector and Compound Tokens

Access to as yet undefined fields of vectors return:

< reals > IEEE "not a number"
< ints > -("maxint"+1)

< ¢hars > ASCII NUL,

< hifs > false

< words > 0

< bytes > 0

Resizing of compound tokens other than by the use of compound token constructors is not
permitted. In particular types or lengths of fields of compound tokens cannot be changed using
TWR (Transmitted Write). Some implementations may restrict the maximum lfength of
transmitted objects.

Diadic
TRD transmitted field read = =
arg.} accessed using arg.l:transmitied_read_desc -> out
TWR transmitted field write 1=
update arg.0 accessed using arg.l: transmitied_write_desc -> out
TFL transmitted vector fill ;;=
fill vector with low bound arg.1{1] and lengrth arg.1{0}:int16
using arg.0->out
TvVC transmifted vector concatenate ::=
vector arg.0 concatenated with arg.1 ->out
TSC transmitted vector scatier ;=
elements of vector arg.0 -> out.(;
indices -> out.1;
TDS transmitted vector distribute 11=
elements of vector arg.0 -> out{index];
TLB set transmitted vector low bound =
set vector low bound of arg.0 with arg.1:intié -> out
Monadic

The above diadic functions with one literal argument .

TLO transmitted vector low bound .=
low bound of vector arg.Q -> out:int16

TLE transmitted object length 1=
iength of arg.0 -> out:inti6

TVL transmitted vector to listi=
convert vector arg.0 to list -> out

Token and Node Definitions Page 21
5.3.2 Stored Objects (I) -

For stored objects:

1) access to stored objects is not qualified by <colour> but arguments to accessing
- functions may carry a <colour> which is preserved on result tokens,

2) access is qualified by <process>,

3) objects in the <process> space are not persistent i.e. they are lost when the
<process> terminates.

It is intended that objects in process (space will be persistent.

With deferred access to as vet uninstantiated elements of stored objects, accesses from anv given
Object Store node may not be honoured in request order. Strict ordering may be obtained where
necessary by encapsulating the accessing node in a PRT (Protect) construct such that further
requests operands are denied until the last transaction is complete. The mechanisms described in
this section have aspects in common with those described in [5] and [6].

5.3.2.1 Stored Vector and Compound Tekens

For stored compound and vectors non-defered access to as yet undefined datum are not reated as
errors. Vectors and compound objects with non-deferred access have the following initial values:

< reals > IEEE "not a number"
< ints > -{("maxint” +1)

< colour > 0

< chars > ASCIT null

< bifs > false

< words > 0

< bytes > 0

The compound descriptor may be constructed initially using the compound token constructors.

If the descripror’s indexing fields are nuil then the entire object is written or returned.

Diadic |
ORE object field read :: =
[arg.0: name] accessed using arg.l:read_desc ->out
OWR object field write ::=
update [arg.Q: name] accessed using arg.l: write_desc
acknowledge: bit -> out
ORW object field read before write 1=
{arg.G: name] accessed using arg.l: write_desc -> out
update larg.0: name] accessed using arg.l: write_desc
OFL stored vector fill =
Jill {arg.Q: name] accessed using arg.l: write_desc
acknowledge:bit -> out
OsC scatter stored vector =

elements of [arg.0: name] accessed using arg.l: read desc ->out.0
indices of {arg.0: name] accessed using arg.l: read_desc ->out.l

Token and Node Definitions Page 21

OLB set stored vector low bound =
set low bound of [arg.O:name] wirh arg.l:intl6
arg.l ->out
Monadic
OLO stored vector low bound::=

low bound of vector [arg.0:name} -> out:int16

OLE stored object length::=
length of vector [arg.0:name] -> out:int16

Field accessing functions are defined for single tokens with multiple fields and elements of
stored lists.

The OAC function adds the value field of the write_desc to the stored counter value. The
accumualtor may be a simple object or contained within a vector or compound token; partial
indexing is not permitted i.e. the indexed field must be a datum.

5.3.2.2 Stored Token Lists !

For stored lists the <name> of 4 list is provided as the argument and returned as a result where
appropriate. Stored token lists allow shared access and manipulation; copying and distributing
the <name> of the list should be done with care.

Diadic
OIF insert front 1=
insert arg.l as new first element of [arg.0:name]
acknowledge -> out
OIL insert last::=

insert arg.() as new last element [arg.0: name]
acknowledge ->out

OIF and OIL. do not guarantee the integrity of stored lists. Some caution should be exercised
when using these functions to manipulate a stored list.

Monadic
All of the above diadic functions functions with one literal argument.

ORF return first o=
return first element of [arg.(0: name] -> out

The following functions act upon a stored list.

OHD object head::=
head atom or first list of nested lists [arg.0:name] -> out

ORS object rest::= :
absorb first atom or list of nested lists [arg.O:name], [rest -> out

OGT object getii=
first atom or list of nested lists [arg.O:name} -> out.0
[resr -> out.1

OEM object empty =
empry [arg.0:name] ->out: bit

Token and Node Definitions Page 22

OCL object collapse::=
[arg.0:name] absorbing list markers -> out

ORL object return Hst ;=
farg.(: name] -> out

ORL is constrained to lists contained entirely within an Object Store <element> partition.
<name:>> fields in elements within the list are not followed by ORL.

5.3.2.3 Reference Count

All objects in the object store have an associated <reference count> which is initially set to 1.
Objects are de-allocated when the <reference count> becomes < 1.

ORC object reference count ::=
{arg.1: name].<ref_count> := [arg.1: name].<ref_count> + arg.(: intlé
if {arg.1: name].<ref _count> = 0 then
de-allocate object;
farg.l:namej.<ref_count> > out

5.3.3 Stored Objects (II)

These functions are based on the original non deferred structure store mechanisms which have
been extended to provide I-Structure sernantics at an object level.

The functions access a single vector of objects mapped across the processing elements (modulo
(maxpe+1)).

Monadic
SSR structure store read =
SS{arg(:int16] -> out
SRD structure store deferred read ;=
if defined then
SS[arg(:int16] -> out
else
defer read until defined
SCL structure store clear ;=
ser SS[arg0[0]..arg{1]:int16] 10 undefined —
SBC structure store block copy &=
copy argO[2] objects from SS[arg0i0] ro SS[argl[1]
Diadic
SSW structure store write 1=
SS[arg.1:intl6] = argl;
honour pending reads
acknowledge -> out:bit
SWR structure store single assignment write 1=

if not defined then
SS[arg. L:int16] = arg(;
honour pending reads
acknowledge -> out:bit

Token and Node Definitions Page

SRW

SRR

SAC

SBF

SSM

structure store write and read oncen=
if not defined then

honour FIRST pending read
else

SSfargl] = argh

structure store read and reset ;1=
SS{arg0:int16]->out
set to undefined

structure store single assignment write 1=
if not defined then

SS[arg.1:int16] := argl);

honour pending reads with arg()
else

SS[argl:int16] := SSfargl]+argl;

SS{argl] -> out

structure store block fill 1=

if not defined then
fill arglf1] 8§ objects starting at argl{0] with arg(;
honour pending reads

structure store read before write ;1=
SS[arg.1:int32] -> out;

honour pending reads
SSfargl:int32] := arg.0

5.4 Path Control Functions

5.4.1 Replication
Monadic
DUP arg.0 -> out.0, out.l

The DUP (duplicate) function has two destination names and may have some evaluation time

advantage over the more general n-output REP (replicate) function.

REP
D

arg.0 -> out

arg -> out

23

Token and Node Definitions Page 24

5.4.2 Synchronisation - _
Diadic

PRS - presence::=
: true -> out: bit

PRS is used to synchronise path control by signalling when both inputs are present. A tree of
PRS nodes may be used where synchronisation over mare than inputs is required. In principle a
wwee of any other diadic operators could be used . g. AND. However PRS may be faster on
some implementations as no argument type checkin g is required.

Monadic

CHN channel =
on arg.0 then
arg.0 -> out.0
on arg.1 then
arg.l -> out.1

‘The CHN (channel) function has two destination names and is used where the associated match
class returns arg.0 and/or arg.l e.g. GET.

5.4.3 Gating

DPradic
PIT pass if true;:=
if arg.1:bit then
arg.0 -> out
PIF pass if false::=
if ~arg.1:bit then
arg.0 -> out
PIP pass if present::=
on arg.l then
arg.0 -> out
SWI switch 1=
if arg.1: bit then
arg.0 -> out.1 -
eise
arg.Q -> out.0
DST distribute .=

arg.) -> out.(ord(arg.1:bit,int,colour,char,typ))

RTR and BTR may be used in a doubly recursive graph to generate all values within some ran ge
of numbers e.g. indices for all elements of a structure. RTR generates values at each branch
point while descending the tree and BTR generates them at the leaves.

Toker and Node Definitions Page

RTR

BTR

recursion tree 1=
if arg.0:int,colour<= (arg.l:int,colour div 2) then -
true->out.0
arg.0¥2+1->out.1
arg.l->out.2
if arg.O<(arg.1 div 2) then
true->out.3
arg.0*2+2->o0ut.4
arg.1->out.5
else
false->out.3
else
false->out.0

bottomn tree::=
if arg.0:int,colour=arg.l:int,colour then
true->arg.0
arg.0->out. 1
else
false->out.0
arg.0->out.2 .
(arg.O+arg.1) div 2->out.3
(arg.O+arg.1) div 2+1->out.4
arg.1->out.5

25

The following two functions would usually be used in conjunction with the Protect (PRT) match
class to implement lazy or eager gating of arguments or results respectively of selected graph

regions.

EMO

EMO

5.4.4 Name

Monadic
YILN

Dhadic

STN

lazy merge output :i=
true -> out.(ord{arg.Q:bit,int,colour,char))

eager merge output =
true -> out.(ord(arg.0:bit,int,colour,char))
false -> all other outputs

yield name: =
name of arg.0 -> out.0:name;
arg.0 -> out.]

set name::=
arg.Q -> [arg.l:name]

© Token and Node Definitions Page 24
5.4.5 Sequence

Some cantion should be exercised with these functions as they are capable of generating long
bursts of tokens which may overload processing-element matching stores.

Diaidic
PRO proljferate:w:::
arg.l:int copies of arg.0 ->out
Monadic
SEQ sequence::=

while seq value initially arg.Q[1):int16 vector and incremented
by arg.0{2] < arg.0{0]

false -> out.Q;

seq value -> out.1
true -> out.0

The sequence descriptor may be have 1 to 3 elements. For one element descripters the discriptor
type is int16. The defaults are 1 for step size and for 0 starting value.

SEQ token sequences are:

1) nint tokens commencing at a sequence bound and incremented or decremented as
appropriate by the step value untl the other bound is reached and,

2) n -1 false tokens followed by one true token.

5.5 Colour Functions

5.5.1 Direct Colour Manipulation

Monadic
CRC create colour::=
on inp.0 then
unique colour -> out: eolour
CCS create colour sequence::=
create colour seqence of lengrh argl in cycles of arg(
colours -> out:colour
YIC yield colour::=
the colour of arg.0 -> out:colour
RCL remove colour::=
arg.0 with no colour -> out.0
old colour ->out.1:colour
EVC exchange value and colour::=
exchange the value and colour fields of arg.l:colour [int -> out:colour
Diadic
STC set colour: =

arg.0 wirth colour arg.l:colour lint -> out

Token and Node Definitions Page 27
5.5.2 Context
Diaclic

SRL set return link::=
Jform environment from arg.0:name and colour of arg.l
-> out.Q:env with colour set to arg.1: colour

arg.0 is usually 2 literal <name> with no <colour>. Set return link is used in combmauon with
the E (exit) function to return results to the invoking context.

Monadic

i exiti=
arg.0 -> [arg.l:env]

These operators may be used in conjunction with YLC (yield colour) STC (set colour) function
1o form re-entrant sub-graph and iteration constructs.

5.6 Priming Functions

This function is always used in conjunction with the Prime (PRM) match class.

Monadic

PRI prime ::=
on first arg.0
literal -> out;
arg.0 -> out
else
arg.l -> out

A system token is used to signal the initial token to the PRI (prime) function.

Token and Node Definitions ' Page 28

6. MATCHING CLASSES

In the following all tokens in the match consideration and directed at the same <name> must have
the same <colour>.

6.1 Bypass

All incoming tokens are forwarded with <input point> preserved. Literals are permitted with the
input point of the literal being determined by the incoming tokens input point.

BYP bypass 1=
inp -> arg

6.2 Normal

Tokens of a particular <colour> and <input point> are queued until 2 a token with a matching
<colour> and complementary <input point> arrives. When this occurs the token at the head of
the queue is removed and forwarded alon g with the arriving token.

NRM normal ::= ;
on (inp.0,inp.1) then
inp.0 -> arg.0; inp.1 -> arg.1

If a token list is directed at one input and an atom at the matching input then the atom is matched
with all list elements including the outermost inter-fist and is then removed. Atoms and lists
should not be intermixed on the same arc.

6.3 Empty
EMP empty list :=
listis empty -> arg.0:bit
6.4 Start
STA start of list ;=
is start of list -> out:bit
6.5 Finish
FIN finish of Hist 1=
s finish of list -> out:bit
6.6 Cons

The atom arriving on inp.0 is forwarded as the new head of list followed by the list arriving on
inp.1. No literal operands permirted.

CNS cons ;=
atom on inp.0 inserted as new head of listoninp.l -> out

Token and Node Definitions Page 29

6.7 List

Forward the new list formed by appending the list on inp.1 to the end of the list on inp.0. List
preserves the enclosing list markers of the lists on inp.0 and inp.1 ie. it creates nested lists. No
literal operands permitted.

1LST list 1=
[list or atom on inp.0 then list or atom oninpl }-> out

6.8 Concatenate

Forward the new list formed by concatenating the list on inp.0 to the list on inp.1. The outermost
list markers of the lists on inp.0 and inp.1 are removed in this process. No literal operands
permitted.

CON concatenate 1=
{unbracket list or atom on inp.0 then unbracket list or atom on inp.1] -> out

6.9 Bracket
Forward the incoming list ér atom on inp.0 as arg.0 with additional [].

BRA bracket 1=
[listor atomon inp.0] ->arg.0

610 Unbracket

Forward the incoming list on inp.0 as arg.0 absorbing the outermost [.

UNB unbracket 1=
remove first level of [1from liston inp.0->arg.0

6.11 Head

Forward the head of the list on inp.0 to arg.0 and absorb the rest of the list.

HED head ::=
remove first level of [] from list on inp.0
first list or atom of nested lists on inp.0 -> arg.0;
absorb rest of list

6.12 Rest

Absorb the head of the list on inp.0 and forward the rest of the list as arg.0.

RES rest =
absorb first atom or list of nested lists , { rest -> arg.0

6.13 Get

The head list of the list on inp.0 is forwarded as arg.0 and the tail as arg.1.

GET get =
first atom or list of nested lists -> arg.0
[rest ->arg.l

Token and Node Definitions Page 30

6.14 Store

Store the token arriving at inp.0 overwriting any previous token. On receiving a token on inp.1
forward a copy of the stored token or an null token if nothing has been stored. Matchin g state is
reset unconditionally by an inter_list token on inp.1; no acknowledgement is issued on reset.
No literal operands permitted.

STO store =
on inp.1 then
copy of latest token inp.0 -> arg.0

6.15 Store and Reset

Store the token arriving at inp.0 overwriting any previous token. On receiving a token on inp.1
forward a copy of the stored token or an empty token if nothing has been stored.

STR store and reset ;1=
on inp.1 then
copy of latest token inp.0 -> arg.0;
reset Lo empty .
If no token has been written to the storage or reset nodes then an empty token is returned; there
1s no deferred access. No literal operands permitted.

6.16 Store Deferred

Store the token arriving at inp.0 overwriting any previous token. On receiving a token on inp.1
forward a copy of the stored token otherwise defer the read access until a token has been stored.
All outstanding reads are honoured after a write. Matching state is unconditionally reset by an
inter_list token on inp.1; no acknowledgement is issued on reset. No literal operands
permitted.

STD store read deferred 1=
on inp.1 then
if not empty then copy of latest token inp.Q -> arg.0;

6.17 Store Update

Emit the previously written token and update with incoming token. If empty emit <?> token and
update. Matching state is unconditionally reset by an inter_list token on inp.1; no
acknowledgement is issued on reset. No literal operands permirted.

STU store update ;=
on inp.l then
if not empty then
copy of previous token on inp.0 -> arg.0
else
null->arg.0
on inp.(then
if not empty then
copy of last token on inp.0 ->arg.(;
else
nulf->arg.0

Token and Node Definitions Page 31

6.18 First

The first list or atom of any given <colour> is passed and all subsequent tokens are absorbed. A
token on inp.1 resets the matching function.

FIR first ;.=
if first token on inp.C then
inp.0 -> arg.0

6.19 Prime

The first list or atom arriving on inp.0 causes the associated PRI function to emit a priming lteral
followed by the triggering list or atom. All other tokens are forwarded as for <monadic>. A
token arriving on inp.1 resets the matching function.

PRM prime =
if first token on inp.0 then
inp.0 -> arg.0
else
inp.0-> arg.1
6.20 Protect

The first list or atom arriving on inp.0 is forwarded. The <input point> is then protected until
reset by a token arriving on inp.1. No literal operands permitted.

PRT protect =
if first token on inp.0 then
inp.0 -> arg.0
eise
on inp.1 then
inp.0 -> arg.0

6.21 Arbitrate

First list or atom arriving is forwarded to arg.Q next on complementary input to be forwarded to
arg.1 and then matching function is reset.

ARB arbitrate 1=
first atom or list arriving -> arg.0;
next atom or list arriving ->arg.1 then reset

Token and Node Definitions Page 32

7. SYSTEM NODES

A number of system nodes are defined in every processing-element. In addidon input and output
nodes are also defined but are associated with specific devices which are in turn associated with
specific processing-elements; this association varies from installation to installation. The effective
<match class> for these nodes is BYP (Bypass).

7.1 System

All system node-names are reserved with their node-descriptions existing in all elements; ¢ is the
<element >.

Although a particular system-node may be referred to at a number of places in the graph, it
represents a single-resource. Multiple referencing therefore, implies non-deterministic merging
on the node's input-points. Unless this is intentional, the node should be referenced once within
an encapsulating resource manager.

e.-1 inp.O0:node -> Node-Store

e.-2 inp.(:? -> [last inp.1l:name] .
e-3 inp.0:trace > [last inp.1l:mame]

e.-4 every inp.(uint ricks*, true -> [lasr inp.l:name]

e.-8 kill process inp.0:int8

e.~-16 Occupancy™* of Input Queue :int32 -> [inp.0:name]

e.-17 Occupancy** of Matching Store :int32 -> {inp.0:name]

e.-18 Occupancy®* of Object Store #nt32 -> [inp.Omame]

e.-19 Size of Structure Store :int32 -> [inp.0:name]

*for the timer tick interval refer to current implementation notes
##216.1 implies 100% occupancy - occupancy of Input Queue is suggested
as the best measure of system workload.

7.2 Input and Qutput

As input and output nodes have physical devices associated with their <name>, there will be
restrictions on the type of tokens produced or accepted by these nodes. Type and length
information is preserved in all input/output operations. i is the input <element object> and ¢ is
the output <element object>. Input/output accesses are not qualified by <colour> although
<colour> is preserved in these transactions; because the effective match class is BYP (Bypass)
the <colour> of the link <name> on inp.1 need not match any token arriving on inp.0.

Monadic

e.-(32+1) oninp.0 then
device.token: dev.dep -> [last inp.1[0}:name]
on inp.l:name then
acknowledge:bit -> [inp.1[1]:name]

e-(48+0) inp.0: dev.dep -> device;
inp.Q -> [last inp.1[0}:name]
on inp.l:name then
acknowledge:bit -> [inp.1{1]:name]

In the case of output nodes provision of an acknowledgment destination name on inp.1 is
optional but desirable.

Token and Node Definitions

Page 33

REFERENCES

(1]

{2

(3]

[4]

[5]

[6]

{71

G.K. Egan, "Data-flow: Its Application to Decentraiised Control”, Ph.D. Thesis,
Department of Computer Science, University of Manchester, England, 1979

J.B. Dennis and D.P. Misunas, "A Preliminary Architecture for a Basic Data-fiow
Processor”, Proceedings of 2nd. Annual Symposium on Computer Architecture”, New
York, May 1975.

Arvind and K.P. Gostelow, "The U-Interpreter”, Computer, Vol. 15, No. 2, Feb 1983,pp
42-50.

Egan G.K., Webb N.J. and Bohm A.P.W., '‘Some Architectural Features of the
CSIRAC II Dataflow Computer', Technical Report 31-007, Laboratory for Concurrent
Computing Systems, School of Electrical Engineering, Swinburne Institute of
Technolog)'{_, 1990.

Arvind and RE Thomas, "I-Structures: An Efficient Data Structure for Functional
Languages”, MIT/LCS/TM-178, MIT, 1981.

C.C. Kirkham and J. Sargeant, "Stored Data Structures on the Manchester Dataflow
Machine", Internal Report, Department of Computer Science, University of Manchester,
England.

Young A.J. Tmplementation of a Multistage Network for Interconnecting a Dataflow
Multprocessor’, TR 112 077 R, Department of Communication and Electrical Engineering,
Royal Melbourne Institute of Technology, Nov. 1988.

Token and Node Definitions Page 34

APPENDIX - Well Known Names

The following names are associated with input and output nodes:

NA.{0-32 x] standard input
NA[0-33.46 x] "input channels"
NA [0 -48 x] standard output
NA [0 -49..62 x] “output channels"

Input channels are linked to the "host" file system with <compound:> token datum of the
following form:

< compound >< link name >{<ack name>}< file name >{< mode >}

< link name > name to which input nodes direct data and output nodes direct
acknowledgmenis ' :

< ack name > name to which link name changes are acknowledged

< file name > name of file on "host" system to be read or written

< mode > 0 token access i.e. files contain tokens in normal (currently

textual) form e.g R32 3.14159

1 character access
2 binary short integer
3 binary real

e.g. CM{NA{01110] CV90 'textdata'[161 }

The input or output channel node receiving the above would then be linked to the "host” file
‘text.data’. Data or acknowledgment tokens would be directed to NA {0111 0] and transactions
would be character.

If the control input subsequently receives another compound token then the previously opened
file will be closed and another opened for access; if a <name> token is sent to the control then the
output link name only is changed. "Host" files are currently opened for sequential access.

Standard input and output require only a <name> link token: Access mode is character. Currently
tokens other than <char> directed to standard output are decoded to normal form.

